
Coding Theory
version: February 6, 2024

Alberto Ravagnani

Eindhoven University of Technology

Contents

Notes and Acknowledgement 3

List of Symbols 4

0 Introduction 5

1 Channels and Codes 6

1.1 Communication Channels . 6

1.2 Codes and Decoders . 8

1.3 The q-ary Symmetric Channel . 11

1.4 Other Exercises . 15

2 Codes with the Hamming Metric 16

2.1 Definitions and First Examples . 16

2.2 The Gilbert-Varshamov Bound . 17

2.3 Linear Codes and Their Defining Matrices 18

2.4 Syndrome Decoding . 22

2.5 Weight Distribution and Its Significance 24

2.6 New Codes from Old . 26

2.7 The Dual Code . 29

2.8 Equivalence of Linear Codes . 31

2.9 Information Sets . 33

2.10 Other Exercises . 34

3 Bounds 38

3.1 The Singleton Bound and MDS Codes . 38

3.2 The Hamming Bound and Perfect Codes 40

3.3 The Griesmer Bound . 43

3.4 The Plotkin Bound . 46

3.5 Other Exercises . 48

4 Reed-Solomon and Goppa Codes 51

4.1 Reed-Solomon Codes . 51

4.2 The Berlekamp-Welch Algorithm . 52

4.3 Goppa Codes . 55

4.4 Other Exercises . 56

1

5 Duality Theory 57

5.1 Preliminary Results . 57

5.2 The MacWilliams Identities . 59

5.3 Computation of Some Weight Distributions 60

5.4 Duality and MDS Codes . 61

5.5 Other Exercises . 63

6 Reed-Muller Codes 64

6.1 Definition and First Properties . 64

6.2 Structure of Reed-Muller Codes . 66

6.3 The Dual of a Reed-Muller Code . 67

6.4 Other Exercises . 68

7 Distributed Storage and Locality 69

7.1 Storage Strategies . 69

7.2 Locality . 70

7.3 Bounds for Codes with Locality . 72

7.4 The Tamo-Barg Construction . 73

7.5 Other Exercises . 76

8 Code-Based Cryptography 77

8.1 The McEliece Cryptosystem . 77

8.2 A Note on Attack Strategies . 78

8.3 Information Set Decoding . 78

8.4 Other Exercises . 81

9 Network Coding 83

9.1 Recombining Messages . 83

9.2 Multicast Networks and the Edge-Cut Bound 85

9.3 Communication Schemes . 87

9.4 The Max-Flow-Min-Cut Theorem . 89

A Finite Fields 93

B Complexity Essentials 97

C Solutions to Some of the Exercises 99

2

Notes and Acknowledgement

1. These are the lecture notes for the course “Coding Theory” (code: 2MMC30) taught

at Eindhoven University of Technology. Please keep in mind the following:

• These notes do not substitute the lectures. Coming to class regularly is impor-

tant to understand the material, ask questions, and figure out what the most

relevant concepts are. Please come to class if you are taking this course.

• These notes grow and evolve as the course progresses: please make sure you

always have the latest version.

• Do not hesitate to contact me or to ask questions in class if some parts of these

notes are not clear to you. Your feedback helps me to improve the material.

2. The notes are organized into chapters covering different topics. Each chapter is

divided into sections. Some important exercises are spread out over the various

sections. Each chapter has a final section with more exercises.

3. I am grateful to Ruud Pellikaan for the material and exercises he generously shared

with me when I became responsible for this course. The book he recently co-

authored [6] is an excellent reference for some sections of this course.

4. Nice coding theory references, by which these notes are partly inspired, are listed

at the end of these notes.

3

List of Symbols

N The natural numbers (with zero)

Z The integers

Q The rationals

R The reals

C The complex numbers

Fq The finite field with q elements, with q a prime power

[n] The set {1, ..., n}, for n ∈ N

Sc
The complement of a set S with respect to an ambient set, usually

{1, ..., n}(
a

b

)
The binomial coefficient of a and b

rowsp(M) The rowspace of the matrix M

colsp(M) The columnspace of the matrix M

M> The transpose of the matrix M

RREF(M) The reduced row echelon form of the matrix M

dH The Hamming distance

ωH The Hamming weight

σH The Hamming support

Fq[X]<s
The space of univariate polynomials over Fq of degree strictly

smaller than s

F2[X1, ..., Xm]×≤s
The space of multivariate square-free polynomials over F2 of degree

at most s

4

Chapter 0

Introduction

See the slides (separate file) for an introduction to the main ideas behind coding theory

and its real-world applications.

5

Chapter 1

Channels and Codes

In 1948, Claude Shannon had the brilliant idea of formalizing the principles of communi-

cation using mathematics. His seminal paper [8] marks the birth of information theory.

Shannon’s intuition consists in the fact that a communication channel is fully described

by a collection of probabilities, which specify how often a symbol y turns into a different

symbol x during transmission.

1.1 Communication Channels

We start by formally defining discrete communication channels.

Definition 1.1. A (communication) channel is a triple K = (X ,Y ,P), where X

and Y are finite non-empty sets (which we call input and output alphabet respectively)

and P : Y ×X → R is a function that satisfies the following properties:

1. 0 ≤ P(y, x) ≤ 1 for all y ∈ Y and x ∈X ,

2.
∑

y∈Y P(y, x) = 1 for all x ∈X .

The elements of X are called input symbols and those of Y output symbols. Input

and output symbols are sometimes called messages.

One often writes P(y | x) instead of P(y, x), and reads it “P of y, given x”. The number

P(y | x) is to be interpreted as the probability that y is received, if x was transmitted.

Remark 1.2. A communication channel K = (X ,Y ,P) gives rise to a collection of

probability spaces as follows. Fix an input symbol x ∈ X , and let Px : 2Y → R be the

function defined by Px(Y ′) :=
∑

y∈Y ′ P(y | x) for all Y ′ ⊆ Y . Then the triple (Y , 2Y ,Px)
is a probability space. For Y ′ ∈ 2Y , the number Px(Y ′) is interpreted as the probability

that some symbol from Y ′ is received when x is transmitted.

6

A fundamental example of channel is the following. It can be constructed over any

alphabet X of cardinality 2 ≤ |X | < +∞, but in these notes we directly focus on finite

fields for convenience (see Appendix A).

Definition 1.3 (q-ary symmetric channel). Let Fq be the finite field with q elements

and let 0 ≤ α ≤ 1 be a real number. The q-ary symmetric channel with error

probability α is the triple Sym(q, α) := (Fq,Fq,P), where the function P : Fq × Fq → R
is defined by

P(y | x) =

{
1− α if x = y,

α/(q − 1) if x 6= y,

for all y, x ∈ Fq. When q = 2 we call this the binary symmetric channel.

A second important example is the following.

Definition 1.4 (erasure channel). Let X be a finite non-empty set and let 0 ≤ α ≤ 1

be a real number. Take ? /∈ X and let Y := X ∪ {?}. Finally, let P : Y ×X → R be

defined as

P(y | x) =


1− α if x = y,

α if y =?,

0 otherwise,

for all y ∈ Y and x ∈ X . Then Er(X , α) := (X ,Y ,P) is called an erasure channel

with erasure probability α over the alphabet X . The question mark ? is called erasure

symbol in this context.

Exercise 1.5. Show that Sym(q, α) and Er(X , α) are indeed communication channels,

according to Definition 1.1.

In digital communications, a channel (X ,Y ,P) is typically used multiple times, say

n, one after another. In practice what we transmit are therefore “words” of given length,

say n, made of “letters” from the input alphabet X . Similarly, we receive “words” of

length n made of “letters” from the output alphabet Y . This is modeled by the product

channel.

Definition 1.6. Let K = (X ,Y ,P) be a channel and let n ≥ 1 be an integer. The n-th

product of (X ,Y ,P) is the channel K n := (X n,Y n,Pn), where Pn is defined by

Pn(y | x) :=
n∏
i=1

P(yi | xi),

for all y ∈ Y n and x ∈X n.

The product construction models what information theorists call a discrete memoryless

channel. “Memoryless” means that what happens in a channel use is indepent from what

happens in the other channel uses. This behaviour is captured by the product of the

P(yi | xi)’s. In these notes we only treat memoryless channels.

7

Proposition 1.7. If K is a channel and n ≥ 1, then K n is a channel.

Proof. Let K = (X ,Y ,P). The function Pn clearly satisfies Property 1 of Definition

1.1. To see that Property 2 holds we compute∑
y∈Y n

Pn(y | x) =
∑

(y1,...,yn)∈Y n

P(y1 | x1) · · ·P(yn | xn)

=
∑
y1∈Y

P(y1 | x1) · · ·
∑
yn∈Y

P(yn | xn) = 1 · · · 1 = 1.

We conclude that the triple K n = (X n,Y n,Pn) is a channel.

We are particularly interested in the n-th product of the q-ary symmetric channel

and of the erasure channel with input alphabet X = Fq; see Definitions 1.3 and 1.4. We

denote these by Symn(q, α) and Ern(q, α) respectively. The transmitted messages in those

situations are vectors of length n with entries in Fq, i.e., elements of the vector space Fnq .

1.2 Codes and Decoders

In this section we explain the main idea behind error correction in communications. In

the sequel, K = (X ,Y ,P) denotes an arbitrary channel, unless otherwise stated.

In digital communications what happens is the following: source and destination agree

on a set of admissible messages C ⊆ X that can be transmitted over the channel. In

this context, C is called an (error-correcting) code. The reason why it makes sense

to restrict the choice of admissible messages from X to C will be explained later. A

message x ∈ C is transmitted, and a message y ∈ Y is received. The function P is

modeling a probabilistic noise affecting the channel, telling us the probability that y is

received, when x is sent. The receiver tries to guess the transmitted message x from the

received one, y. This guessing process is called decoding. In some applications, decoding

needs to be modeled with quite sophisticated probabilistic objects, whereas the following

definition is good enough for us.

Definition 1.8. Let K = (X ,Y ,P) be a channel and let C ⊆ X be non-empty. A

decoder for C is a function D : Y → C ∪ {f}, where f /∈ X is called a failure

message.

The decoder D is modeling the attempt of the receiver to guess the transmitted mes-

sage x ∈ C from y, the received one. We say that “decoding is successful” when D(y) = x,

i.e., when the transmitted message is guessed correctly. The failure message f is modeling

the situation where the receiver is not confident in making a guess.

8

Example 1.9. Let Sym4(2, α) = (F4
2,F4

2,P4) be fourth product of the binary symmetric

channel with probability α < 1/2 (in practice, α is much smaller than 1/2). Let

C = {(0, 0, 0, 0), (1, 1, 1, 1), (1, 1, 0, 0)} ⊆ F4
2.

Suppose that y = (0, 0, 1, 1) is received, and that we want to guess the transmitted

message. A very natural way of doing this is looking for the messages x ∈ C that

maximize the probability

P4(y | x),

as these are the most likely to have been sent. The latter fact relies on the (standard)

assumption that all elements of C have exactly the same probability to be sent. Under

this assumption, by Bayes theorem we have

Prob(x sent | y received) = P(y | x)
Prob(x sent)

Prob(y received)
= P(y | x)

1

|C | · Prob(y received)
.

Therefore, for a given received message y, the maxima of the sets

{P(y | x) | x ∈ C }, {Prob(x sent | y received) | x ∈ C }

are attained by the same elements x ∈ C . In other words, maximizing the probability

Prob(x sent | y received) is the same as maximizing P(y | x).

In our example, C has cardinality three and the computations are easy:

P4(y | (0, 0, 0, 0)) = (1− α)2α2,

P4(y | (1, 1, 1, 1)) = α2(1− α)2,

P4(y | (1, 1, 0, 0)) = α4.

Since α < 1/2 by assumption, the two elements (0, 0, 0, 0) and (1, 1, 1, 1) of C are the

most probable, but they are equally probable. In such a situation we are undecided and

prefer to return the failure message f .

The probabilistic decoding strategy illustrated in the previous example applies to

general channels.

Definition 1.10 (maximum likelihood decoding). Let K = (X ,Y ,P) be a channel and

let C ⊆ X be non-empty. The maximum likelihood decoder D : Y → C ∪ {f} for

C is defined by

D(y) :=

{
x if x is the unique element of C that maximizes P(y | x),

f otherwise.

Now suppose that we are transmitting over a channel K = (X ,Y ,P), and that we

agreed on a non-empty set of admissible messages C ⊆ X and on a decoder D : Y →
C ∪ {f} for C . A message x ∈ C is transmitted, and y ∈ Y is received. The following

9

are the possible scenarios.

1. Successful decoding : D(y) = x. This is what we are aiming for.

2. Decoding failure: D(y) = f , i.e., decoding returns a failure message. That’s some-

thing we want to avoid as much as possible.

3. Decoding error : D(y) /∈ {x,f}, i.e., decoding returns the wrong message. That’s a

complete disaster and makes communication highly unreliable.

In scenarios 2 and 3 we say that “decoding was unsuccessful”.

Remark 1.11. The whole point of coding theory is to minimize the chance to be in the

second and third scenarios in the above list, without reducing too much the cardinality of

the code C . Given a channel K = (X ,Y ,P), this goal is achieved by carefully designing

C ⊆X and the decoder D.

On the one hand, restricting the choice of messages to a proper subset C ⊆ X can

reduce the chance of unsuccessful decoding, as we will see shortly. On the other hand,

the smaller |C | is, the poorer our language is. For example, when |C | = 2 our language

is binary, i.e., we can only transmit information of the form “yes” or “no”. If |C | = 3, we

can say “yes”, “no”, or “maybe”. That’s slightly better but still very limiting. The code

used in the Mariner 9 mission in 1971 (a Reed-Muller code) had cardinality 64, and could

only transmit low-quality pictures of Mars. Twenty-six years later, one of the codes used

in the Mars Pathfinder mission (a Reed-Solomon code) had cardinality close to 10400.

The set C plays a crucial role in error correction, as most problems in coding theory

reduce to identifying a good selection of admissible messages. Constructing C is essentially

what these notes are about. We therefore repeat the definition of code more formally.

Definition 1.12. An (error-correcting) code for a channel K = (X ,Y ,P) is a non-

empty subset C ⊆X . Its elements are called codewords.

Since unsuccessful decoding is what we want to avoid, a good idea is to compute the

probability that this happens. Fix a channel K = (X ,Y ,P), a code C ⊆ X , and

a decoder D : Y → C ∪ {f}. For a given transmitted codeword x ∈ C , what is the

probability the decoding is unsuccessful? As P(y|x) measures the probability that y is

received when x is transmitted, the decoder D returns x̂ 6= x or f with probability∑
y∈Y

D(y)6=x

P(y | x).

Assuming that all codewords are equally likely to be transmitted (standard assumption

in information theory), the probability of unsuccessful decoding is therefore given

by the average

PUD(K ,C , D) :=
1

|C |
∑
x∈C

∑
y∈Y

D(y)6=x

P(y | x). (1.1)

10

Note that if |C | = 1 then PUD(K ,C , D) = 0, i.e., we never make a mistake when

decoding. However, a code of cardinality one is completely useless. Observe moreover

that, by Property 2 of Definition 1.1, we have

PUD(K ,C , D) := 1− 1

|C |
∑
x∈C

∑
y∈Y

D(y)=x

P(y | x). (1.2)

1.3 The q-ary Symmetric Channel

In this section we discuss how the objectives stated in Remark 1.11 can be achieved for

the n-th product of the q-ary symmetric channel. We only consider codes endowed with

a maximum likelihood decoder (Definition 1.10). This situation is highly relevant for

applications.

Notation 1.13. In the sequel n ≥ 1 is an integer and (Fnq ,Fnq ,Pn) = Symn(q, α) is the

n-th product of the q-ary symmetric channel with error probability 0 ≤ α ≤ 1.

We want to analyze the PUD for different codes C ⊆ Fnq endowed with the maximum

likelihood decoder, in order to get a sense of how changing the code affects the PUD.

We start by giving a more explicit formula for the P(y | x)’s. These can be conveniently

expressed in terms of the Hamming distance between x and y.

Definition 1.14. The Hamming distance between vectors x, y ∈ Fnq is the integer

dH(x, y) := |{1 ≤ i ≤ n | xi 6= yi}|.

The Hamming distance indeed satisfies the properties of a distance function, in the

following precise sense.

Proposition 1.15. The Hamming distance dH : Fnq × Fnq → R is a distance function

on Fnq , i.e., it satisfies the following properties:

1. for all x, y ∈ Fnq we have dH(x, y) ≥ 0, and equaliy holds if and only if x = y;

2. for all x, y ∈ Fnq we have dH(x, y) = dH(y, x);

3. for all x, y, z ∈ Fnq we have dH(x, y) ≤ dH(x, z) + dH(z, y).

Proof. Exercise (the solution can be found in Appendix C).

Remark 1.16. The Hamming distance can be defined over any non-empty set X (which

is not necessarily a finite field Fq). For x, y ∈X n, let dH(x, y) := |{1 ≤ i ≤ n | xi 6= yi}|.
The function dH satisfies all the properties of Proposition 1.15.

Next, we show the connection between the Hamming distance and the q-ary symmetric

channel.

11

Proposition 1.17. Let Symn(q, α) = (Fnq ,Fnq ,Pn) be the n-th product of the q-ary sym-

metric channel with error probability 0 ≤ α ≤ 1. For all x, y ∈ Fnq we have

Pn(y | x) =

(
α

q − 1

)d
(1− α)n−d =

(
α

(1− α)(q − 1)

)d
(1− α)n,

where d = dH(x, y).

Proof. Let S := {1 ≤ i ≤ n | yi 6= xi} ⊆ [n]. Then |S| = d and |Sc| = n − d. Therefore

by definition of Symn(q, α) we have

Pn(y | x) =
n∏
i=1

P(yi | xi) =

(∏
i∈S

α

q − 1

)(∏
i∈Sc

1− α

)
=

(
α

q − 1

)d
(1− α)n−d,

which is the desired expression.

Another natural way to decode over the q-ary symmetric channel is to look for the

message x ∈ C ⊆ Fnq that is closer to the received one, y, with respect to the Hamming

distance.

Definition 1.18. Let Symn(q, α) = (Fnq ,Fnq ,Pn) be the n-th product of the q-ary sym-

metric channel with error probability 0 ≤ α ≤ 1. Let C ⊆ Fnq be a code. The minimum-

distance decoder D : Fnq → C ∪ {f} for C is defined by

D(y) :=

{
x if x is the unique element of C that minimizes dH(y, x),

f otherwise.

Under very reasonable assumptions from an applied viewpoint, maximum likelihood

decoding is the same as minimum-distance decoding.

Proposition 1.19. Consider the n-th product Symn(q, α) = (Fnq ,Fnq ,Pn) of the q-ary

symmetric channel with error probability 0 ≤ α ≤ 1. Assume α < (q − 1)/q and let

C ⊆ Fnq be a code. Let D and D′ be the maximum likelihood and the minimum distance

decoders for C , respectively. For all y ∈ Y we have

D(y) = D′(y).

Proof. It is easy to see that α < (q−1)/q implies α < (1−α)(q−1). Therefore the result

follows from Proposition 1.17.

We familiarize ourselves with the q-ary symmetric channel and its minimum distance

decoder in the next example. We will repeatedly need the following elementary combina-

torial result.

12

Lemma 1.20. Let x ∈ Fnq and let 0 ≤ i ≤ n be an integer. The number of vectors y ∈ Fnq
with dH(y, x) = i is (

n

i

)
(q − 1)i.

Proof. Exercise (the solution can be found in Appendix C).

Example 1.21. Let q = 3, n = 3, and let K = Sym3(3, α) = (F3
3,F3

3,P3) be the ternary

symmetric channel with error probability α. Assume α < 2/3 (in practice, α is much

smaller). Consider the following two codes in F3
3:

C1 = {0}, C2 = F3
3.

Let D1 and D2 be the minimum distance decoders for C1 and C2 respectively. We want

to compute PUD(K ,C1, D1) and PUD(K ,C2, D2).

The code C1 has only one codeword, namely 0 = (0, 0, 0). Therefore all vectors y ∈ F3
3

decode to 0 and it is to be expected that the PUD is zero. Let us check this using the

definition in (1.2). We have

PUD(K ,C1, D1) = 1− 1

|C1|
∑
x∈C1

∑
y∈F3

3
D1(y)=x

P3(y | x)

= 1−
∑
y∈F3

3

(α
2

)dH(y,0)

(1− α)3−d
H(y,0),

where the last equality follows from Proposition 1.17. By Lemma 1.20 we then have

PUD(K ,C1, D1) = 1−
3∑
d=0

∑
y∈F3

3

dH(y,0)=d

(α
2

)d
(1− α)n−d

= 1−
3∑
d=0

2d
(

3

d

)(α
2

)d
(1− α)3−d

= 1−
3∑
d=0

(
3

d

)
αd(1− α)3−d = 0,

where the latter equality follows from the Binomial Theorem. While the probability of

unsuccessful decoding is zero, the code C1 has cardinality 1 and is therefore completely

useless from a communication viewpoint.

The code C2 has instead 33 codewords, and for every x ∈ C2 and y ∈ F3
3 we have that y

decodes to x if and only if y = x. Thus

PUD(K ,C2, D2) = 1− 1

33

∑
x∈C2

P3(x | x) = 1− 1

33

∑
x∈F3

3

(1− α)3 = 1− (1− α)3.

13

Exercise 1.22. Let q = 3, n = 3, and let K = Sym3(3, α) = (F3
3,F3

3,P3) be the ternary

symmetric channel with error probability α. Assume α < 2/3. Let

C := {x ∈ F3
3 | x1 + x2 = 0, x2 + x3 = 0}

and let D be the minimum distance decoder for C . Compute PUD(K ,C , D).

Closely related to the PUD is the following fundamental parameter of an error-

correcting code C ⊆ Fnq .

Definition 1.23. The minimum (Hamming) distance of a code C ⊆ Fnq with |C | ≥ 2

is the positive integer

dH(C) := min{dH(x, y) | x, y ∈ C , x 6= y}.

We let n+ 1 be the minimum distance of any code C ⊆ Fnq with cardinality |C | = 1.

A lower bound for the minimum distance of a code C ⊆ Fnq yields an upper bound for

the corresponding PUD.

Proposition 1.24. Consider the n-th product K = Symn(q, α) of the q-ary symmetric

channel with error probability 0 ≤ α ≤ 1. Assume α < (q − 1)/q. Let d be a positive

integer and let C ⊆ Fnq be a non-zero code with dH(C) ≥ d. Let D be the maximum

likelihood decoder for C . We have

PUD(K ,C , D) ≤ 1− (1− α)n
b d−1

2
c∑

i=0

(
n

i

)(
α

1− α

)i
.

Proof. Write Symn(q, α) = (Fnq ,Fnq ,Pn). By Proposition 1.19, we shall assume that D is

the minimum distance decoder. Let t = b(d− 1)/2c. Note that for x ∈ C and y ∈ Fnq we

have D(y) = x whenever dH(y, x) ≤ t (explain why). Therefore by Proposition 1.17 we

deduce ∑
y∈Fn

q

D(y)=x

Pn(y | x) ≥
∑
y∈Fn

q

dH(y,x)≤t

Pn(y | x)

=
t∑
i=0

∑
y∈Fn

q

dH(y,x)=i

Pn(y | x)

=
t∑
i=0

∑
y∈Fn

q

dH(y,x)=i

(
α

(1− α)(q − 1)

)i
(1− α)n.

14

Combining this with Lemma 1.20 we obtain

∑
y∈Fn

q

D(y)=x

Pn(y | x) ≥ (1− α)n
t∑
i=0

(
n

i

)(
α

1− α

)i
.

Finally, by Eq. (1.2) we conclude

PUD(K ,C , D) ≤ 1− (1− α)n
t∑
i=0

(
n

i

)(
α

1− α

)i
.

Proposition 1.24 shows that if the minimum distance of a code C is large, then

PUD(K ,C , D) is small, where K is a product of the q-ary symmetric channel and D is

the maximum likelihood decoder for C . This motivates the following central problem in

coding theory.

Problem 1.25. Construct error-correcting codes C ⊆ Fnq having large cardinality and

large minimum distance simultaneously.

1.4 Other Exercises

Exercise 1.26. Show that the Hamming distance is invariant under translations. In

other words, show that for all x, y, z ∈ Fnq we have dH(x, y) = dH(x+ z, y + z).

Exercise 1.27. Let K = Er(X , α) = (X ,Y ,P) be the erasure channel as in Defini-

tion 1.4, and let K n = (X n,Y n,Pn) be its n-th product. Fix x ∈ X n, y ∈ Y n and

define the set S := {1 ≤ i ≤ n | yi =?}. Show that Pn(y | x) = 0 if yi 6= xi for at least a

value of i ∈ {1, ..., n} \ S, and that Pn(y | x) = α|S| (1− α)n−|S| otherwise.

Exercise 1.28. Do the same calculations as in Example 1.9 with the fourth power

Er4(F2, α) of the erasure channel, the same code C ⊆ F4
2 and y = (1, ?, 0, 0).

Exercise 1.29 (solved in Appendix C). 1. Construct a code C ⊆ F4
2 with |C | = 2

and dH(C) ≥ 3.

2. Show that there is no code C ⊆ F4
2 with dH(C) ≥ 3 and |C | ≥ 3.

3. Show that there exists a code C ⊆ F4
3 with dH(C) ≥ 3 and |C | ≥ 3.

15

Chapter 2

Codes with the Hamming Metric

2.1 Definitions and First Examples

We start by establishing the notation for the remainder of these notes.

Notation 2.1. In the sequel q is a prime power and n, k and d denote integers with

n ≥ 1, 0 ≤ k ≤ n and 1 ≤ d ≤ n+ 1 (unless otherwise stated).

In these lecture notes we mainly focus on codes that live in the Hamming distance

space (Fnq , dH), also called block codes.

Definition 2.2. A (block) code is a non-empty subset C ⊆ Fnq . Its elements are the

codewords. We call n the length of C . We say that C is linear if it is an Fq-subspace

of Fnq . In this case we write C ≤ Fnq to stress the linear structure. The dimension of

C ≤ Fnq is its dimension as a linear space over Fq.

Remark 2.3. If C ≤ Fnq is a linear code of dimension k, then we have |C | = qk. To see

this, fix an Fq-basis {v1, ..., vk} of C and observe that all the elements of C can be uniquely

written as a linear combination of the vi’s. The number of such linear combinations is qk.

Recall from Definition 1.23 that the minimum (Hamming) distance of a code

C ⊆ Fnq is the positive integer dH(C) = min{dH(x, y) | x, y ∈ C , x 6= y}, with the

convention that dH(C) = n+ 1 if |C | = 1.

The following property of the minimum distance follows immediately from the defini-

tions.

Remark 2.4. Let D ⊆ C ⊆ Fnq be codes. Then dH(D) ≥ dH(C).

Notation 2.5. Several references say that “C is an (n,M, d)q code” if C ⊆ Fnq , |C | = M ,

and dH(C) = d. Similarly, they say that “C is an [n, k, d]q code” if is a linear (n, qk, d)q
code. The notation (n,M,≥ d)q or [n, k,≥ d] is also sometimes used to denote codes

whose minimum distance is lower-bounded by d.

16

Some simple codes can be constructed as follows.

Example 2.6 (trivial codes). Fnq and all sets C ⊆ Fnq of cardinality one are called trivial

codes. Their minimum distances are 1 and n + 1, respectively. The only linear trivial

codes are {0} and Fnq .

Example 2.7 (repetition codes). The set C = {(α, ..., α) | α ∈ Fq} ≤ Fnq is a linear code

of dimension 1 and minimum distance n. It is called the n-times repetition code.

A third example is the following.

Example 2.8 (parity-check codes). For n ≥ 2 the set

C =

{
(x1, ..., xn) ∈ Fnq | xn = −

n−1∑
i=1

xi

}
≤ Fnq

is a linear code of dimension n− 1. It is called the parity-check code of length n.

Exercise 2.9. Compute the minimum distance of the parity-check code of Example 2.8

for an arbitrary n ≥ 2.

2.2 The Gilbert-Varshamov Bound

As already mentioned in Chapter 1, good codes should have large cardinality and large

minimum distance at the same time. In this section we show the existence of codes of

sufficiently large cardinality and minimum distance.

Definition 2.10. For 0 ≤ r ≤ n and x ∈ Fnq , the Hamming ball of radius r centered

at x is the set BH
r (x) = {y ∈ Fnq | dH(y, x) ≤ r} ⊆ Fnq .

The following result is an immediate consequence of Lemma 1.20.

Proposition 2.11. For all 0 ≤ r ≤ n and x ∈ Fnq we have

|BH
r (x)| =

r∑
i=0

(
n

i

)
(q − 1)i.

In particular, the latter cardinality does not depend on the choice of x ∈ Fnq .

We can now show the existence of codes of sufficiently large minimum distance and

cardinality. The proof only uses the metric structure of (Fnq , dH).

Theorem 2.12 (Gilbert-Varshamov bound). There exists a code C ⊆ Fnq with minimum

distance dH(C) ≥ d and cardinality

|C | ≥ qn∑d−1
i=0

(
n
i

)
(q − 1)i

. (2.1)

17

Proof. Let β denote the quantity on the RHS of (2.1), and observe that β is the ratio

between the cardinality of Fnq and the size of the Hamming ball of radius d − 1. Note

moreover that the desired theorem is immediate if d = n + 1, as in such case β = 1 and

we can take e.g. C = {0}. We henceforth assume 1 ≤ d ≤ n.

Let C be a code having the maximum cardinality among all codes with minimum

distance ≥ d (the set of codes with minimum distance ≥ d is non-empty, and therefore

the mentioned maximum does exist). We will show that |C | ≥ β. For every x ∈ Fnq there

must exist a codeword c ∈ C such that dH(c, x) ≤ d− 1, as otherwise D = C ∪{x} would

be a code with dH(D) ≥ d and cardinality exceeding that of C , a contradiction. It follows

that Fnq is contained within the union of the Hamming balls of radius d − 1 centered at

the codewords of C . In symbols,

Fnq ⊆
⋃
c∈C

Bd−1(c).

We therefore have

qn = |Fnq | ≤

∣∣∣∣∣⋃
c∈C

Bd−1(c)

∣∣∣∣∣ ≤∑
c∈C

|Bd−1(c)| = |C | ·
d−1∑
i=0

(
n

i

)
(q − 1)i,

where the last equality follows from Proposition 2.11. Thus |C | ≥ β, as desired.

2.3 Linear Codes and Their Defining Matrices

Most interesting codes are linear subspaces C ≤ Fnq . These can be conveniently repre-

sented via matrices, which make them easy to handle.

Definition 2.13. We say that a matrix G with entries in Fq is a generator matrix

of/for a linear code C ≤ Fnq if it has full rank and its rows generate C over Fq. We also

say that C is generated by G.

Observe that the empty matrix G : ∅ × {1, ..., n} → Fq is a generator matrix for the

zero code {0} ≤ Fnq .

Remark 2.14. If a code C ≤ Fnq has dimension k ≥ 1 and G is a generator matrix of C ,

then C = {x ·G | x ∈ Fkq}.

Every code C ≤ Fnq has a generator matrix, which is not unique in general. However,

we can select a canonical generator matrix using the notion of reduced row-echelon form.

Recall that a matrix M over a field is in reduced row-echelon form if:

1. the zero rows of M are grouped at the bottom;

2. each non-zero row of M has more initial zeros than the previous rows;

18

3. the first non-zero entry of any non-zero row of M (called the pivot entry of the

row) equals 1 and is the only non-zero entry in its column.

Every matrix M can be put in reduced row-echelon form by performing elementary

row operations. Such a reduced row-echelon form is unique and denoted by RREF(M).

Therefore every linear code C ≤ Fnq has a unique generator matrix in reduced row-echelon

form, which we call the standard generator matrix of C .

Example 2.15. The n-times repetition code (Example 2.7) has standard generator matrix

G =
(
1 1 · · · 1

)
.

Note that any matrix G =
(
α α · · · α

)
with α 6= 0 is a generator matrix of the n-times

repetition code.

Exercise 2.16. Write down the standard generator matrix of the codes of Examples 2.6

and 2.8.

Exercise 2.17. Let G be a generator matrix of a code C ≤ Fnq and let A ∈ Fk×kq be an

invertible matrix. Show that A ·G is a generator matrix of C as well.

When a code is linear, its minimum distance can be computed by taking the minimum

of the Hamming weights of the non-zero codewords. These are defined as follows.

Definition 2.18. The (Hamming) weight of a vector x ∈ Fnq is ωH(x) := |{i | xi 6= 0}|.

Example 2.19. The ternary vectors (0, 1, 0, 2), (0, 0, 0, 0) and (1, 2, 2, 1) in F3
3 have

weight 2, 0 and 4 respectively.

Proposition 2.20. Let C ≤ Fnq be a non-zero linear code. We have

dH(C) = min{ωH(x) | x ∈ C , x 6= 0}.

Proof. Exercise (the proof can be found in Appendix C).

Example 2.21. The matrix 1 1 0

0 1 2

1 2 2

 ∈ F3×3
3

is not the generator matrix of any code. Indeed, it is does not have full rank as the last

row is the sum of the previous two. The matrix(
1 1 0

0 1 2

)
∈ F2×3

3

instead generates a linear code C ≤ F3
3 of dimension 2 over F3. Therefore |C | = 32 = 9

by Remark 2.3. The elements of C are

C = {(0, 0, 0), (1, 1, 0), (0, 1, 2), (2, 2, 0), (0, 2, 1), (1, 2, 2), (2, 1, 1), (1, 0, 1), (2, 0, 2)}.

19

We also have {ωH(v) | v ∈ C , v 6= 0} = {2, 3}, from which dH(C) = 2.

Example 2.22. Let x, y ∈ Fn2 be vectors of even Hamming weight. Then it is easy to see

(exercise) that x + y also has even Hamming weight. Therefore the set C of vectors of

even Hamming weight in Fn2 is a linear code (called the even weight code of length n).

We have dim(C) = n− 1 and dH(C) = 2.

Another (very useful) way of describing a linear code is via a parity-check matrix.

Definition 2.23. We say that a matrix H with entries in Fq is a parity-check matrix

of/for a linear code C ≤ Fnq if it has full rank and C is the left kernel of H>, i.e, if

C =
{
x ∈ Fnq | x ·H> = 0

}
. (2.2)

Note that a parity-check matrix H for a code C uniquely determines C because of the

defining property in (2.2).

The following result is an immediate consequence of the rank-nullity theorem and of

the definitions.

Proposition 2.24. Let C ≤ Fnq be a linear code of dimension k, and let G, H be a

generator and a parity-check matrix of C , respectively. Then G has size k×n and H has

size (n− k)× n. Moreover, GH> = 0.

Example 2.25. If C = {0} is the zero code, then any invertible n × n matrix H is a

parity-check matrix of C . The empty matrix is the parity-check matrix of Fnq .

The parity-check matrix of a code can be easily computed from a generator matrix,

provided that the latter has a special form.

Proposition 2.26. Let C ≤ Fnq be a code of dimension k ≥ 1. Suppose that C has a

generator matrix of the form G = (Ik | A), where Ik is the identity k × k matrix. Then

H = (−A> | In−k)

is a parity-check matrix of C

Proof. One easy checks that G ·H> = 0, from which we see that the code C is contained

in the left kernel of H>. Since H has rank n−k, H> has rank n−k as well. In particular,

the left kernel of H> has dimension n− (n−k) by the rank-nullity theorem. Therefore C

must be exactly the left kernel of H> and H is a parity-check matrix of C .

Example 2.27. If C is the 5-times repetition code, then combining Example 2.15 with

Proposition 2.26 we see that a parity-check matrix of C is

H =


−1 1 0 0 0

−1 0 1 0 0

−1 0 0 1 0

−1 0 0 0 1

 ∈ F4×5
q .

20

Exercise 2.28. Find a parity-check matrix of the codes of Examples 2.6 and 2.8.

Every linear code has at least one parity-check matrix, as the following linear algebra

result result shows.

Proposition 2.29. Let C ≤ Fnq be a linear code. There exists a parity-check matrix

of C .

Proof. Let k be the dimension of C . Then the quotient space Fnq /C has dimension n− k
and is therefore isomorphic to Fn−kq . Let g : Fnq /C → Fn−kq be an isomorphism and

let f : Fnq → Fnq /C be the projection on the quotient. The composition g ◦ f is linear,

surjective, and its kernel is C . We can therefore take as H the matrix of g◦f with respect

to the canonical bases of Fnq and Fn−kq (the images are put in the rows of H).

The minimum distance of a linear code can be computed by looking at the columns

of a parity-check matrix H of C . We will give a slightly more general result using the

notion of Hamming support of a vector.

Definition 2.30. The (Hamming) support of x ∈ Fnq is σH(x) := {1 ≤ i ≤ n | xi 6= 0}.

Remark 2.31. It easily follows from the definitions that for all vectors x ∈ Fnq we have

|σH(x)| = ωH(x). In words, the weight of a vector is the cardinality of its support.

We can now show that the linear dependencies among the columns of a parity-check

matrix gives us information on the supports of the codewords.

Proposition 2.32. Let C ≤ Fnq be a code of dimension 0 ≤ k ≤ n − 1, and let H be a

parity-check matrix of C . Then for all subsets S ⊆ {1, ..., n} with |S| ≥ 1 the following

are equivalent:

1. the columns of H indexed by S are linearly dependent,

2. there exists x ∈ C with x 6= 0 and σH(x) ⊆ S.

Proof. Let h1, ..., hn ∈ Fn−kq be the columns of H. If the vectors {hi | i ∈ S} are linearly

dependent, there exist field elements (αi | i ∈ S), not all zero, such that
∑

i∈S αihi = 0.

Let x ∈ Fnq be the vector whose i-th component is αi for all i ∈ S, and that is zero

elsewhere. By definition, σH(x) ⊆ S. We also have
∑n

i=1 xihi = 0, i.e., H · x> = 0 (or

equivalently x ·H> = 0). Therefore x ∈ C . The other direction is analogous and left as

exercise.

Using Proposition 2.32 we can therefore express the minimum distance of a linear code

as follows.

21

Corollary 2.33. Let C ≤ Fnq be a code of dimension 0 ≤ k ≤ n − 1, and let H be a

parity-check matrix of C . We have

dH(C) = 1 + max{1 ≤ i ≤ n | every i columns of H are linearly independent}
= min{1 ≤ i ≤ n | there exist i columns of H that are linearly dependent}.

Proof. If k = 0 then dH(C) = n+ 1 by definition and H is an invertible n× n matrix by

Proposition 2.24. Therefore

max{1 ≤ i ≤ n | every i columns of H are linearly independent} = n,

and the result follows. If 1 ≤ k ≤ n − 1 then the corollary is an immediate consequence

of Proposition 2.32.

Example 2.34. Let C ≤ F6
2 be the linear code defined by the parity-check matrix

H =

1 0 0 0 1 1

0 1 0 1 1 1

0 0 1 1 1 0

 .

Every two columns of H are linearly independent, so dH(C) ≥ 3. Columns 2,3 and 4

are linearly dependent, and therefore there exists a non-zero codeword x ∈ C whose

Hamming support is contained in {2, 3, 4}. In particular, dH(C) must be 3. The fact that

the columns 1, 2 and 3 are independent tells us that there is no codeword x ∈ C whose

Hamming support is contained in {1, 2, 3}.

2.4 Syndrome Decoding

In this section we describe a decoding algorithm that works for any linear code. The main

idea behind the decoding procedure is the following.

Suppose that we are working with a linear code C ≤ Fnq . Let x ∈ C be transmitted

and let y ∈ Fnq be received. Pick any ê ∈ Fnq of minimal Hamming weight with the

property that y − ê ∈ C . In other words, ê is a vector that attains

min{ωH(e) | e ∈ Fnq , y − e ∈ C }.

Then x̂ := y − ê ∈ C turns out to be a good estimate for the transmitted codeword x

with respect to the minimum distance decoder (Definition 1.18). More precisely, we have

dH(y − ê, y) ≤ dH(x′, y) for all x′ ∈ C .

Indeed, suppose towards a contradiction that dH(y − ê, y) > dH(x′, y) for some x′ ∈ C .

Setting e′ := y − x′, this implies ωH(ê) > ωH(e′). Since y − e′ = x′ ∈ C , this contradicts

the definition of ê.

22

The above discussion gives us an idea for a decoding algorithm for an arbitrary linear

code C : When y ∈ Fnq is received, we search for a vector e ∈ Fnq of minimal Hamming

weight in the set y + C = {y + x | x ∈ C }, and we decode y to y − e.

In order to make this algorithm efficient, we need a good strategy to compute a vector

e of minimal weight from y. Using a parity-check matrix H of C can help. We start by

observing that the set y + C is the equivalence class of y with respect to the equivalence

relation on Fnq defined by y ∼ y′ if and only if y − y′ ∈ C .

Lemma 2.35. For all y, y′ ∈ Fnq we have y ∼ y′ if and only if y ·H> = y′ ·H>.

Proof. We have y ·H> = y′ ·H> if and only if (y− y′) ·H> = 0. Since C is the left kernel

of H>, this is true if and only if y − y′ ∈ C .

The previous lemma shows that the equivalence classes of ∼ are in bijection with the

elements of the set {y · H> | y ∈ Fnq }, which are called syndromes. We can therefore

prepare a table that lists all syndromes, and that for each syndrome s lists a vector of

minimal weight e having that syndrome, also called a coset leader. Once we have done

that we can apply the following algorithm.

Algorithm 2.36 (Syndrome Decoding). A code C is used, and H is a parity-check matrix

of C . A vector y ∈ Fnq is received.

1. Compute the syndrome s = y ·H>.

2. Find s in the table and the corresponding vector e ∈ Fnq .

3. Decode y to y − e.

Note that the syndromes of C are in bijection with the elements of the quotient

space Fnq /C . In particular, there are qn−k syndromes (i.e., rows in our table).

Example 2.37. Let C ≤ F6
2 be the linear code defined by the parity-check matrix

H =

1 0 0 0 1 1

0 1 0 1 1 1

0 0 1 1 1 0

 .

Write

H> =



1 0 0

0 1 0

0 0 1

0 1 1

1 1 1

1 1 0


and observe that, by definition, each row of H> is a syndrome. The vector (0, 0, 0) is

another syndrome. As the rows of H> are distinct we already found 7 syndromes out

23

of 26−(6−3) = 23 = 8. Note moreover that (1, 0, 1, 0, 0, 0) · H> = (1, 0, 1), which is then

the eigth syndrome. For each syndrome s we now need to find a vector e having that

syndrome and minimal Hamming weight, and fill in the table. One possibility is the

following:

Syndrome Coset leader

(0, 0, 0) (0,0,0,0,0,0)

(1, 0, 0) (1,0,0,0,0,0)

(0, 1, 0) (0,1,0,0,0,0)

(0, 0, 1) (0,0,1,0,0,0)

(0, 1, 1) (0,0,0,1,0,0)

(1, 1, 1) (0,0,0,0,1,0)

(1, 1, 0) (0,0,0,0,0,1)

(1, 0, 1) (1,0,1,0,0,0)

Now suppose that x = (0, 1, 1, 1, 0, 0) ∈ C is transmitted, that one error occurs and

y = (0, 1, 1, 1, 0, 1) is received. We apply syndrome decoding and compute

y ·H> = (1, 1, 0).

The corresponding coset leader in the table is e = (0, 0, 0, 0, 0, 1). We therefore decode to

y − e = (0, 1, 1, 1, 0, 0), which is the transmitted codeword, x.

2.5 Weight Distribution and Its Significance

When working with a code C ⊆ Fnq for the q-ary symmetric channel (Definition 1.3), a

particularly undesirable situation is when a codeword x ∈ C is transmitted and a different

codewords y ∈ C , y 6= x, is received. In such a scenario we are unable to realize that an

error has occurred in the transmission and we certainly make a decoding error.

Let (Fnq ,Fnq ,Pn) = Symn(q, α) be the n-th product of the q-ary symmetric channel

with error probability 0 ≤ α ≤ 1. Let C ⊆ Fnq be a code with |C | ≥ 2. The probability

of an undetected error associated with n, q, α and C is

PUE(n, q, α,C) :=
1

|C |
∑
x∈C

∑
y∈C
y 6=x

Pn(y | x).

When the code C is linear, the above probability can be bounded in terms of a

fundamental parameter of the underlying code.

Definition 2.38. Let C ⊆ Fnq be a code. The weight distribution of C is the integer

vector (WH
0 (C), ...,WH

n (C)) ∈ Nn+1, where for all 0 ≤ i ≤ n the number

WH
i (C) := |{x ∈ C | ωH(x) = i}|

24

counts the number of codewords in C with Hamming weight i.

Note that for any code C ⊆ Fnq we have
∑n

i=0W
H
i (C) = |C |.

Example 2.39. The n-times repetition code C (Example 2.7) has weight distribution

WH
0 (C) = 1, WH

n (C) = q − 1 and WH
i (C) = 0 for all 1 ≤ i ≤ n − 1. Observe that

1 + (q − 1) = q, which is the cardinality of the C .

Exercise 2.40. Write down the weight distribution of the trivial codes {0} and Fnq .

Weight distribution and probability of an undetected error relate as follows.

Theorem 2.41. Let C ≤ Fnq be a linear code for the n-th product Symn(q, α) of the

q-ary symmetric channel with error probability 0 ≤ α ≤ 1. We have

PUE(n, q, α,C) =
n∑
i=1

(
α

q − 1

)i
(1− α)n−i WH

i (C).

Proof. By Proposition 1.17 we have

PUE(n, q, α,C) =
1

|C |
∑
x∈C

∑
y∈C
y 6=x

Pn(y | x)

=
1

|C |
∑
x∈C

∑
i≥1

∑
y∈C

dH(y,x)=i

(
α

q − 1

)i
(1− α)n−i

=
1

|C |
∑
i≥1

(
α

q − 1

)i
(1− α)n−i

∑
x∈C

|{y ∈ C | dH(x, y) = i}|.

Now observe that, as C is linear, for all fixed x ∈ C and i ≥ 1 the map

{y ∈ C | dH(x, y) = i} → {y ∈ C | ωH(y) = i}

defined by y 7→ x− y is a bijection. Therefore we conclude that

PUE(n, q, α,C) =
n∑
i=1

(
α

q − 1

)i
(1− α)n−i WH

i (C),

as desired.

A convenient way of writing the weight distribution of a code is by encoding it in a

bivariate homogeneous polynomial.

Definition 2.42. Let C ⊆ Fnq be a code. The weight enumerator of C is the polynomial

WH(C) =
∑
i≥0

WH
i (C)X iY n−i ∈ R[X, Y].

25

Note that WH(C) is homogeneous of degree n. We conclude by re-stating Theo-

rem 2.41 in a polynomial form.

Corollary 2.43. Let C ≤ Fnq be a linear code for the n-th product Symn(q, α) of the

q-ary symmetric channel with error probability 0 ≤ α ≤ 1. We have

PUE(n, q, α,C) = WH(C)

(
α

q − 1
, 1− α

)
− (1− α)n.

Example 2.44. Continuing Example 2.39, the n-times repetition code C has weight

enumerator Y n + (q − 1)Xn. Therefore by Theorem 2.41 or Corollary 2.43 we have

PUE(n, q, α,C) =
αn

(q − 1)n−1
.

Exercise 2.45. Compute the weight distribution and the weight enumerator of the code

generated over F3 by the matrix

G =

(
2 0 2 1 0

1 1 0 0 1

)
.

Exercise 2.46. Let C ≤ Fn2 be a binary linear code of dimension k ≥ 1 having a

generator matrix whose rows all have even Hamming weight. Prove that WH
i (C) = 0 for

all odd integers 1 ≤ i ≤ n.

2.6 New Codes from Old

In this subsection we discuss ways of obtaining new codes starting from an old one. These

operations will be needed later to study structural properties of error-correcting objects.

In the sequel, we denote by Sc the complement of a subset S ⊆ {1, ..., n}.

Notation 2.47. Let S ⊆ {1, ..., n} be a non-empty set and let C ⊆ Fnq be a linear code.

We let C (S) := {x ∈ C | σH(x) ⊆ S} be the set of codewords of C whose Hamming

support is contained in S.

Note that C (S) is a subcode of C ⊆ Fnq for any non-empty set S. In particular, by

Remark 2.4 we have dH(C (S)) ≥ dH(C).

After constructing C (S), the coordinates in Sc are often deleted as they are zero. This

is formally done via a projection map, which we will often use in the sequel.

Notation 2.48. For a non-empty set S ⊆ {1, ..., n} we let πS : Fnq → F|S|q be the projection

on the coordinates indexed by S.

We can obtain a new code from an old one by deleting/selecting some coordinates.

26

Definition 2.49. Let C ⊆ Fnq be a code and let S ⊆ {1, ..., n} be a non-empty set. The

S-puncturing of C is πS(C) and its S-shortening is πS(C (S)).

Note that the S-puncturing and the S-shortening of C are codes of length |S|. More-

over, if both C and C (S) have cardinality at least two then

dH(C (S)) = dH(πS(C (S))) ≥ dH(C).

This easily follows from the definitions and Remark 2.4.

Remark 2.50. If C ≤ Fnq is a linear code then its S-puncturing and S-shortening are

linear codes as well.

Example 2.51. Let C ≤ F4
3 be the code generated by

G =

(
1 1 2 0

1 2 2 1

)
.

Let S = {1, 3, 4}. We have C (S) = {(0, 0, 0, 0), (2, 0, 1, 1), (1, 0, 2, 2)}, which is a linear

code of dimension 1 in F4
3. Therefore the S-shortening of C is

πS(C (S)) = {(0, 0, 0), (2, 1, 1), (1, 2, 2)} ≤ F3
3.

The S-puncturing of C is instead the code πS(C) generated by

G′ =

(
1 2 0

1 2 1

)
and has therefore dimension 2 over F3. Note that C has minimum distance 2, πS(C) has

minimum distance 1, while πS(C (S)) has minimum distance 3.

Remark 2.52. The S-puncturing of a code C may have minimum distance strictly larger

than that of C . Take for example the code C ≤ F4
2 generated by

G =

(
1 1 1 1

0 0 0 1

)
and let S = {1, 2, 3}. We have dH(C) = 1 while dH(πS(C)) = 3.

Exercise 2.53. Let C ≤ Fnq be the n-times repetition code. Compute the dimension

of C (S) for all non-empty sets S ⊆ {1, ..., n}. Show that πS(C) is the |S|-times repetition

code for all non-empty sets S ⊆ {1, ..., n}.

The following simple construction increases the length of a code by one.

Definition 2.54. Let C ≤ Fnq be a linear code. The extension of C is the linear code

C ext := {(x1, ..., xn,−x1 − · · · − xn) | (x1, ..., xn) ∈ C } ≤ Fn+1
q .

27

Exercise 2.55 (solved in Appendix C). 1. Following the notation of Definition 2.54,

show that C ext is a code of length n + 1, with the same dimension as C , and with

dH(C ext) ≥ dH(C).

2. Show that if C ≤ Fn2 is a non-zero binary code of odd minimum distance d, then

C ext has minimum distance d+ 1.

Exercise 2.56. Show that C ≤ Fnq is a linear code of dimension 1 ≤ k ≤ n − 1

with generator and parity-check matrices G = (Gij) and H, respectively, then C ext has

generator and parity-check matrices

G′ =


G11 G12 · · · G1n −G11 − · · · −G1n

G21 G22 · · · G2n −G21 − · · · −G2n

...

Gk1 Gk2 · · · Gkn −Gk1 − · · · −Gkn

 and


1 1 · · · 1

0

H 0
...

0

 ,

respectively.

In the remainder of the section we describe two constructions that produce a new code

combining two old codes.

Definition 2.57. Let n1, n2 ≥ 1 be integers and let C1 ⊆ Fn1
q , C2 ⊆ Fn2

q be codes. The

product of C1 and C2 is the code

C1 × C2 := {(x, y) | x ∈ C1, y ∈ C2} ⊆ Fn1+n2
q .

Following the notation of Definition 2.57, if |C1|, |C2| ≥ 2 then C1 × C2 has length

n1+n2, cardinality |C1| · |C2|, and minimum distance dH(C1×C2) = min{dH(C1), d
H(C2)}.

The last code construction of this section is simple but very interesting. We will use

it to study the family of Reed-Muller codes in Chapter 6.

Definition 2.58. Let C1,C2 ≤ Fnq be linear codes. The Plotkin sum of C1 and C2 is

the linear code

C1 ⊕P C2 := {(x, x+ y) | x ∈ C1, y ∈ C2} ≤ F2n
q .

Exercise 2.59. Following the notation of Definition 2.58, show that the dimension of

the Plotkin sum C1 ⊕P C2 is the sum of the dimensions of C1 and C2. Write down a

generator matrix of C1 ⊕P C2 in terms of generator matrices G1 and G2 for C1 and C2,

respectively.

Example 2.60. Let C ≤ Fnq be the n-times repetition code (Example 2.7). Then the

code C ⊕P C ≤ F2n
q has (

1 1 · · · 1 1 1 · · · 1

0 0 · · · 0 1 1 · · · 1

)
∈ F2×2n

q

as generator matrix. In particular, it has dimension 2 and minimum distance n.

28

The Plotkin sum has the following important general property.

Proposition 2.61. Let C1,C2 be as in Definition 2.58. Assume that C1 and C2 are both

non-zero and denote by d1 and d2 their minimum distances, respectively. Then C1 ⊕P C2

has minimum distance min{2d1, d2}.

Proof. Exercise (Hint : if y ∈ C2 and yi 6= 0, then either xi 6= 0 or xi 6= yi). The solution

can be found in Appendix C.

2.7 The Dual Code

The vector space Fnq is endowed with a symmetric, bilinear, non-degenerate form Fnq×Fnq →
Fq defined by

(x, y) 7→ 〈x, y〉 :=
n∑
i=1

xiyi.

If 〈x, y〉 = 0 we say that x and y are orthogonal. Recall that being non-degenerate

means that if a vector y ∈ Fnq satisfies 〈x, y〉 = 0 for all x ∈ Fnq , then we must have y = 0.

In other words, the zero vector is the only one to be orthogonal to all vectors.

We call 〈x, y〉 the scalar product (or the inner product) of x and y. The following

properties are easy to verify. In the sequel we will apply these properties without explicitly

referring to them.

Proposition 2.62. Let x, x′, y, y′ ∈ Fnq and let α ∈ Fq. The following hold:

1. 〈x+ x′, y + y′〉 = 〈x, y〉+ 〈x′, y〉+ 〈x, y′〉+ 〈x′, y′〉,

2. α〈x, y〉 = 〈αx, y〉 = 〈x, αy〉.

Definition 2.63. The dual of a linear code C ≤ Fnq is

C ⊥ := {y ∈ Fnq | 〈x, y〉 = 0 for all x ∈ C }.

We summarize the properties of the dual code in the next result.

Theorem 2.64. Let C ≤ Fnq be a linear code. The following hold.

1. C ⊥ is a linear code.

2. If G is a generator matrix of C , then G is a parity-check matrix of C ⊥.

3. dim(C ⊥) = n− dim(C).

4. If H is a parity-check matrix of C , then H is a generator matrix of C ⊥.

5. (C ⊥)⊥ = C .

6. For any linear code D ≤ Fnq we have (C ∩D)⊥ = C ⊥+D⊥ and (C +D)⊥ = C ⊥∩D⊥.

29

Proof. 1. The fact that C ⊥ is linear easily follows from the definitions.

2. By the linearity of C , a vector x belongs to C ⊥ if and only if it belongs to the left

kernel of G>. Therefore C ⊥ is precisely the left kernel of G>. This shows that G is

a parity-check matrix of C ⊥.

3. Use part 2 and Proposition 2.24.

4. By definition, the left kernel of H>, say L , is contained in C ⊥. By Proposition 2.24

and part 3, the spaces L and C ⊥ have the same dimension. Therefore they are

equal.

5. The inclusion C ⊆ (C ⊥)⊥ is easy. The other follows from part 3.

6. This is left as an exercise (Hint : for each identity, prove one inclusion directly and

obtain the other by a dimension argument).

Example 2.65. Consider the finite field F4 = F2[α], where α2 = α + 1. Let C ≤ F5
4 be

the code generated by the matrix

G =

(
1 α2 0 1 α

α α α 1 1

)
.

Then C has dimension 2 and minimum distance 3. The reduced row-echelon form of G is

G′ =

(
1 0 α α 0

0 1 α2 1 α2

)
,

which is another generator matrix of C . By Proposition 2.26,

H =

α α2 1 0 0

α 1 0 1 0

0 α2 0 0 1


is a parity-check matrix of C , and therefore a generator matrix of the dual code C ⊥. Its

reduced row-echelon form is

H ′ =

1 0 0 α2 1

0 1 0 0 α

0 0 1 1 α2

 .

The dual code C ⊥ has dimension 3 and minimum distance 2. We can apply again Propo-

sition 2.26 to obtain a parity-check matrix of C ⊥:

G′′ =

(
α2 0 1 1 0

1 α α2 0 1

)
.

Finally, observe that G′′ has reduced row-echelon form G′, as one expects.

Exercise 2.66. Let S ⊆ {1, ..., n} be a set and recall Notation 2.47. Show that Fnq (S)⊥ =

Fnq (Sc), where Fnq is viewed as a code and S is the complement of S in {1, ..., n}.

30

2.8 Equivalence of Linear Codes

A ubiquitous question in mathematics is: “When are two objects essentially the same?”

In coding theory we ask ourselves: “When are codes C and D essentially the same code?”.

In this section we only study this question for linear codes.

Definition 2.67. A (Hamming) linear isometry is an Fq-linear map f : Fnq → Fnq that

preserves the Hamming weight, i.e., such that ωH(x) = ωH(f(x)) for all x ∈ Fnq .

Example 2.68. The binary codes C ,D ≤ Fnq generated by

G =

(
1 0 1 1 0

0 1 0 0 1

)
, and G′ =

(
1 1 0 1 0

0 0 1 0 1

)
,

respectively, are different but equivalent. Indeed, take the map f : Fnq → Fnq defined by

f : (x1, x2, x3, x4, x5) 7→ (x4, x3, x2, x1, x5). It is easy to check that f is a linear isometry

and that f(C) = D .

The next result describes some properties of linear isometries. The proof is left as an

exercise.

Proposition 2.69. 1. Every linear isometry f is an Fq-isomorphism f : Fnq → Fnq .

2. If f, g : Fnq → Fnq are linear isometries, then so is f ◦ g.

3. If f is a linear isometry, then f−1 is a linear isometry as well.

The previous result implies that linear isometries form a group with respect to com-

position of functions. The group identity is the identity map.

Definition 2.70. We say that linear codes C ,D ≤ Fnq are equivalent if there exists a

linear isometry f such that f(C) = D . In such a case we write C ≡ D .

Note that, by Proposition 2.69, code equivalence is indeed an equivalence relation.

Moreover, equivalent codes have the same parameters, as one expects.

Corollary 2.71. Let C ,D ≤ Fnq be equivalent codes. Then C and D have the same

dimension and the same minimum distance.

In Example 2.68 we encountered a linear isometry that acts on vectors by permuting

their entries. We now introduce two general classes of linear isometries.

Notation 2.72. 1. For a permutation τ of the set {1, ..., n}, we let fτ : Fnq → Fnq be

the map defined by fτ (x1, ..., xn) := (xτ(1), ..., xτ(n)) for all x ∈ Fnq .

2. For a vector λ ∈ Fnq with λi 6= 0 for all 1 ≤ i ≤ n, we let fλ : Fnq → Fnq be the map

defined by fλ(x1, ..., xn) := (λ1x1, ..., λnxn) for all x ∈ Fnq .

31

It is easy to check that the maps introduced in Notation 2.72 are linear isometries. The

following result shows that they generate the entire group of linear isometries f : Fnq → Fnq .

Theorem 2.73. Let f : Fnq → Fnq be a map. The following are equivalent:

1. f is a linear isometry,

2. f = fλ ◦ fτ for some λ ∈ Fnq with λi 6= 0 for all 1 ≤ i ≤ n and some permutation τ

of the set {1, ..., n}.

Proof. We only need to show that 1 implies 2, as the other direction is immediate. Suppose

that f is a linear isometry. Let {e1, ..., en} be the canonical basis of Fnq . Since f preserves

the Hamming weight, for all 1 ≤ i ≤ n there exists ji ∈ {1, ..., n} and λji ∈ Fq \ {0} with

f(ei) = λjieji .

We claim that the map i 7→ ji is a permutation, say τ , of {1, ..., n}. Indeed, if i 6= i′

and ji = ji′ , then f(ei + ei′) is a multiple of eji . This contradicts the fact that f preserves

the Hamming weight, because ei + ei′ has weight 2, while f(ei + ei′) has weight 1 or 0.

Therefore the map i 7→ ji is injective, and thus surjective (i.e., a permutation).

Now take any vector vector x ∈ Fnq . By definition, x =
∑n

i=1 xiei. By the linearity

of f we have

f(x) =
n∑
i=1

xiλjieji . (2.3)

Next, let λ ∈ Fnq be the vector whose ji-th component is λji . Notice that this uniquely

defines λ precisely because τ is a permutation. We have

(fλ ◦ fτ)(x) = (fλ ◦ fτ)

(
n∑
i=1

xiei

)
=

n∑
i=1

xi(fλ ◦ fτ)(ei) =
n∑
i=1

xiλjieji . (2.4)

Therefore comparing (2.3) and (2.4) we conclude that f(x) = (fλ ◦ fτ)(x). Since x ∈ Fnq
was arbitrary, we have that f = fλ ◦ fτ as functions.

Exercise 2.74 (solved in Appendix C). Show that the group of linear isometries f :

Fnq → Fnq has order (q − 1)nn!.

A natural question is whether code equivalence is “compatible” with duality. The

answer to this question is affirmative.

Proposition 2.75. Let C ,D ≤ Fnq be linear codes. Suppose that D = (fλ ◦ fτ)(C) for

some λ ∈ Fnq with λi 6= 0 for all 1 ≤ i ≤ n and some permutation τ of the set {1, ..., n}.
Then D⊥ = (f1/λ ◦ fτ)(C ⊥), where 1/λ = (1/λ1, ..., 1/λn).

Proof. Exercise.

Corollary 2.76. Let C ,D ≤ Fnq be linear codes. Then C ≡ D if and only if C ⊥ ≡ D⊥.

32

2.9 Information Sets

A useful concept in the analysis of linear codes is the following.

Definition 2.77. Let C ≤ Fnq be a linear code of dimension k ≥ 1. A non-empty set

S ⊆ {1, ..., n} is called an information set for C if πS(C) has dimension k.

Example 2.78. Let C ≤ F5
3 be the code generated by the matrix

G =

(
1 2 1 0 1

2 2 1 1 2

)
.

Then {1, 2}, {1, 3} and {1, 2, 3} are information sets, while {2}, {2, 3} are not.

The terminology “information set” is motivated by the following property: if S is

an information set for C and x ∈ C , then the components (xi | i ∈ S) contain all

the information to uniquely determine x. More formally, the following properties of

information sets hold. They can be established using elementary linear algebra and are

therefore left as an exercise (have a look at Example 2.80 before attempting to prove

them).

Proposition 2.79. Let C ≤ Fnq be a code of dimension k ≥ 1.

1. C has an information set of cardinality k.

2. Every information set S for C has cardinality at least k.

3. Every information set S for C contains an information set for C of cardinality

exactly k (we call such an information set minimal).

4. Let G be any generator matrix of C . Then S ⊆ {1, ..., n} is an information set for C

if and only if the columns of G indexed by S form a matrix of rank k.

5. C is equivalent to a code having {1, ..., k} as an information set (such a code is

called systematic).

6. Suppose that S is an information set for C , and let x ∈ C . If y ∈ C is a codeword

with yi = xi for all i ∈ S, then x = y.

7. Suppose that S is a minimal information set for C , and let v ∈ Fkq . Then there

exists a unique x ∈ C with πS(x) = v.

Proof. Exercise (Hint : look first at Example 2.80).

Example 2.80. Consider the code C ≤ F5
3 generated by the matrix

G =

(
1 2 1 0 1

2 1 1 2 1

)
.

33

Then C has dimension k = 2. There are
(
5
2

)
= 10 submatrices of G of size 2×2, indexed by

the subsets S ⊆ {1, ..., 5} of cardinality 2. The submatrix corresponding to the set {2, 4}
has rank 2, because

det

(
2 0

1 2

)
= 1 6= 0.

Therefore we can perform elementary row operations on G and obtain a new matrix,

say G′, that has an identity 2 × 2 matrix in block {2, 4}. More precisely, we can divide

both rows of G by 2, then subtract the first row to the second row, and finally divide the

second row by 2. This yields

G′ =

(
2 1 2 0 2

0 0 1 1 1

)
.

The rows of G′ are a basis of C . Therefore

C = {(2α, α, 2α + β, β, 2α + β) | α, β ∈ F3}. (2.5)

In particular, the restriction of π{2,4} to C is a bijection, showing that part 7 of Proposi-

tion 2.79 holds.

The code C is not systematic, as {1, 2} is not an information set for C . Let τ be any

permutation of {1, ..., 5} with τ(1) = 2 and τ(2) = 4. Directly from 2.5 we obtain

fτ (C) = {(α, β, ..., ..., ...) | α, β ∈ F3},

where the missing entries depend on the specific choice of τ . Therefore {1, 2} = τ−1({2, 4})
is an information set for fτ (C).

2.10 Other Exercises

Exercise 2.81. Let f : F3
2 → F6

2 be the map defined by

f(x, y, z) := (x, y, z, x+ y, y + z, x+ z)

for all (x, y, z) ∈ F3
3. Let C ⊆ F6

3 be the image of f .

1. Show that C is a linear code and compute its dimension.

2. Write down a generator and a parity-check matrix of C .

3. Compute the minimum distance of C by applying Corollary 2.33.

Exercise 2.82. Suppose q = n and let C = {x ∈ Fnq | {x1, ..., xn} = {1, ..., n}}.

1. Show that C is a non-linear code.

2. Compute the cardinality and the minimum distance of C .

34

3. Show that for every x ∈ C and for every error vector e ∈ Fnq of weight 1 there are

exactly two codewords of C at distance 1 from x+ e.

Exercise 2.83. Let C ≤ F5
2 be the code generated by

G =

(
0 1 0 1 1

1 0 1 0 1

)
.

1. Write G in standard form and compute a parity-check matrix of C .

2. Compute the length, the dimension and the minimum distance of C .

3. Compute a coset leader for each equivalence class of F5
2 modulo the code.

4. Use syndrome decoding to correct the following messages containing at most one

error:

y1 = (1, 1, 1, 1, 1), y2 = (0, 1, 1, 1, 0), y3 = (1, 1, 0, 1, 1).

Exercise 2.84 (solved in Appendix C). Let C ≤ Fn2 be a binary code of dimension

1 ≤ k ≤ n− 1 and dH(C) ≥ 3. Let H be a parity-check matrix of C .

1. Show that the columns of H are distinct.

2. Assume that x ∈ C is sent and y ∈ F5
2 is received, and that exactly one error occured

in the transmission (i.e., there is a unique 1 ≤ i ≤ n with xi 6= yi). Show that i can

be retrieved by looking at H and at the product H · y>.

Exercise 2.85. Let C ≤ F6
2 be the binary code defined by the generator matrix

G =

0 0 1 0 1 1

0 1 0 1 0 1

1 0 0 1 1 0

 .

1. Compute the parameters of C (length, dimension and minimum distance).

2. Compute the parameters of the extended code C ext and write down a parity-check

matrix of it.

Exercise 2.86. Show the following linear version of the Gilbert-Varshamov bound. Let

1 ≤ d ≤ n and let k be the smallest integer with

qk >
qn∑d−1

i=0

(
n
i

)
(q − 1)i

.

Then k ≥ 1 and there exists a linear code C ≤ Fnq of dimension k and minimum distance

at least d.

Exercise 2.87. Consider the code D := (C ext)⊥, where C is the code of Exercise 2.85.

Show that the shortening πS(D(S)) has minimum distance at least 3 for all S ⊆ {1, ..., n}
with |S| = 5.

35

Exercise 2.88. Let q be not a power of 2 and let C ,D ≤ Fnq be non-zero linear codes

of minimum distances d1 and d2, respectively. Define the code

E := {(x, x+ y, x− y) | x ∈ C , y ∈ D} ≤ F3n
q .

Show that E has dimension dim(C)+dim(D) and minimum distance exactly min{3d1, 2d2}.

Then show that the assumption “q is not a power of 2” is indeed necessary, exhibiting

codes C ,D ≤ Fn2 for which E has minimum distance strictly smaller than min{3d1, 2d2}.

Exercise 2.89 (solved in Appendix C). Is there a linear code having weight enumerator

1Y 9 + 14X3Y 6 + 16X4Z5 + 5X7Y 2 + 10X8Y + 9X9? Justify your answer.

Exercise 2.90. For some n and some q of your choice (not all parameters will work):

1. construct a linear code C ≤ Fnq with C ∩ C ⊥ = {0};

2. construct a linear code C ≤ Fnq with C ∩ C ⊥ 6= {0};

3. construct a linear code C ≤ Fnq with C = C ⊥.

Exercise 2.91 (solved in Appendix C). Let C ≤ Fn2 be any linear binary code. Show

the following statement: Either all the codewords of C have even weight, or exactly half

of the codewords of C have even weight.

Exercise 2.92. A code C ≤ Fnq is called self-dual if C ⊥ = C .

1. Show that C ≤ Fnq is self-dual then n is even and the dimension of C is n/2.

2. Show that if C ≤ Fn2 is a binary self-dual code, then the all-1 vector (1, 1, ..., 1)

belongs to C .

Exercise 2.93. Let C ≤ Fnq be a linear code of dimension 1 ≤ k < n.

1. Let τ be a permutation of {1, ..., n}. Show that a non-empty set S ⊆ {1, ..., n} is

an information set for C if and only if τ−1(S) is an information set for fτ (C).

2. Show that S is a minimal information set for C if and only if the complement Sc is

a minimal information set for C ⊥.

Exercise 2.94. Recall that a permutation matrix over a field Fq is a square matrix P

with the following properties:

• in each row of P there is exactly one non-zero entry, and that entry is a 1;

• in each column of P there is exactly one non-zero entry, and that entry is a 1.

1. Show that every permutation matrix P is invertible and that P−1 is a permutation

matrix as well.

2. Show that for all permutation matrices P ∈ Fn×nq and all vectors x ∈ Fnq we have

ωH(x) = ωH(x · P).

3. Let C ,C ′ ≤ Fnq be non-zero linear codes of the same dimension, say k. Show that

the following are equivalent:

36

• C ′ = fτ (C) for some permutation τ of {1, ..., n};

• there exist generator matrices G and G′ of C and C ′ (respectively) and a

permutation matrix P of size n× n with G′ = GP .

37

Chapter 3

Bounds

In this chapter we illustrate various techniques to obtain upper and lower bounds for a

given code parameter in terms of the others. The best known bounds are named after

Singleton and Hamming, and yield the classes of maximum distance separable and perfect

codes, respectively.

3.1 The Singleton Bound and MDS Codes

In this section we present one of the most important bounds for the cardinality of an

error-correcting code, namely, the Singleton bound.

Theorem 3.1 (Singleton bound). Let C ⊆ Fnq be a code. We have |C | ≤ qn−d+1, where

d = dH(C). In particular, if C is linear then dim(C) ≤ n− dH(C) + 1.

Proof. The result follows from the definitions if |C | = 1. Now suppose |C | ≥ 2, and let

S := {1, 2, ..., n−d+1}. We claim that the restriction of πS to C is injective. To see this,

suppose towards a contradiction that there exist x, y ∈ C with x 6= y but πS(x) = πS(y).

Then xi = yi for i ∈ {1, ..., n − d + 1} and thus dH(x, y) ≤ n − (n − d + 1) = d − 1, a

contradiction.

Definition 3.2. A code C ⊆ Fnq whose parameters attain the bound of Theorem 3.1 is

called MDS (maximum distance separable).

Note that the trivial code (Example 2.6) are MDS.

Example 3.3. Let q be not a power of 2. The code C ≤ F4
q generated by

G =

(
1 0 1 1

0 1 1 −1

)

38

is MDS. Indeed, it has dimension 2 and length 4. To see that it has minimum distance 3,

observe that a non-zero codeword of C has the form

xa,b = (a, b, a+ b, a− b) for some a, b ∈ Fq with (a, b) 6= (0, 0).

If a = 0 and b 6= 0 then xa,b has weight 3. The same is true if b = 0 and a 6= 0. If a 6= 0

and b 6= 0 then a+b and a−b cannot be both zero, as q is not a power of 2 by assumption.

Therefore xa,b has weight at least 3.

Exercise 3.4. Check that the repetition code of Example 2.7 is MDS. Show that Fnq is

the only MDS code of minimum distance equal to 1 and length n.

Exercise 3.5. Check that the code of Example 2.21 is MDS.

MDS codes are a central topic in coding theory. They have also been investigated

in connection with several topics in combinatorics (combinatorial designs, hyperplane

arrangements, posets, ...).

The next result gives a criterion to check if a code is MDS from a generator matrix.

Proposition 3.6. Let k ≥ 1 and let G a k × n matrix over Fq. Then G is the generator

matrix of an MDS code if and only if all k × k minors of G are non-zero.

Proof. Suppose that G has a zero k× k minor, say the one corresponding to the columns

indexed by a set S. Then there exists a non-zero linear combination of the rows of G, say

x ∈ Fnq , whose Hamming support is contained in the complement of S. In particular, G

generates a code C containing x. As |S| = k, we have 1 ≤ ωH(x) ≤ n− k and C cannot

be an MDS code.

Now suppose that all k × k minors of G are non-zero. Let C be the code generated

by G, and suppose towards a contradiction that there exists a non-zero codeword x ∈ C

with ωH(x) ≤ n − k. Let S ⊆ {1, ..., n} be a set of size k and such that xi = 0 for all

i ∈ S. It is easy to see that the k× k minor of G whose columns are indexed by S is zero,

a contradiction.

A very natural question at this point is whether MDS codes exist or not. Finding all

the triples (q, n, d) for which there exists an MDS code C ≤ Fnq of dimension k is still

an open problem in coding theory. However, it is very well-known that MDS codes exist

over finite fields of sufficiently large cardinality with respect to n. The following result

provides an explicit construction.

Proposition 3.7. Suppose 1 ≤ k ≤ n ≤ q. Let α1, ..., αn be distinct elements of Fq and

let

G =


1 1 · · · 1

α1 α2 · · · αn
...

...

αk−11 αk−12 · · · αk−1n

 ∈ Fk×nq .

39

Then G generates an MDS code of dimension k.

Proof. Fix any set S ⊆ {1, ..., n} of cardinality k. The submatrix of G made of the

columns indexed by S, say GS, is a so-called Vandermonde matrix. It is known that the

determinant of such a matrix is

det(GS) =
∏
i,j∈S
i<j

(αi − αj),

which is a non-zero element of Fq as the αi’s are distinct by assumption. Since S was

arbitrary with |S| = k, the matrix G generates an MDS code by Proposition 3.6.

Example 3.8. Let F9 = F3[β], where β2 + 2β + 2 = 0. Take n = 5 and consider the

distinct elements 0, β, β2, β3, β4 of F9. The matrix

G =

1 1 1 1 1

0 β β2 β3 β4

0 β2 β4 β6 β8


generates an MDS code of dimension 3 and minimum distance 3 as well.

Exercise 3.9. Let C ≤ Fnq be a code of dimension k ≥ 1. Show that the following are

equivalent:

1. C is MDS,

2. every subset S ⊆ {1, ..., n} with |S| = k is an information set for C (see Defini-

tion 2.77).

Exercise 3.10. Let C ≤ Fnq be a linear code. Show that dH(C) + dH(C ⊥) ≤ n+ 2.

3.2 The Hamming Bound and Perfect Codes

Another famous bound for the size of an error-correcting code is the Hamming bound. Its

proof uses an argument known as sphere-packing.

Theorem 3.11 (Hamming bound). Let d ≥ 1 and let C ⊆ Fnq be a code with |C | ≥ 2

and dH(C) ≥ d. Define t = b(d− 1)/2c. We have

|C | ≤ qn∑t
i=0

(
n
i

)
(q − 1)i

.

Proof. The Hamming balls of radius t centered at the codewords of C are pairwise dis-

joint. Indeed, if there existed x, x′ ∈ C and y ∈ Fnq with y ∈ BH
t (x) ∩ BH

t (x′), then by

Proposition 1.15 we would have dH(x, x′) ≤ dH(x, y) + dH(y, x′) ≤ 2t < d ≤ dH(C), a

40

contradiction. We therefore conclude

∑
x∈C

|BH
t (x)| =

∣∣∣∣∣⋃
x∈C

BH
t (x)

∣∣∣∣∣ ≤ |Fnq | = qn.

By Proposition 2.11 we have

∑
x∈C

|BH
t (x)| = |C |

t∑
i=0

(
n

i

)
(q − 1)i,

and the result follows.

Definition 3.12. A code C ⊆ Fnq with |C | ≥ 2 and whose parameters meet the Hamming

bound of Theorem 3.11 is called perfect.

The proof of the Hamming bound also gives us the following characterization of perfect

codes.

Proposition 3.13. Let C ⊆ Fnq be a code with |C | ≥ 2, and let t = b(dH(C) − 1)/2c.
The following are equivalent:

1. C is perfect,

2. for all y ∈ Fnq there exists a unique x ∈ C with y ∈ BH
t (x).

In other words, in a perfect code of minimum distance d the Hamming balls centered

at the codewords and with radius t = b(d−1)/2c are pairwise disjoint and cover the entire

space Fnq .

Example 3.14. Suppose that n is odd and let C ≤ Fn2 be the n-times binary repetition

code. The minimum distance of C is d = n = 2t+ 1 and therefore

t∑
i=0

(
n

i

)
(q − 1)i =

t∑
i=0

(
n

i

)
. (3.1)

The quantity in (3.1), say ε, is the number of subsets of {1, ..., n} of cardinality at most t.

These are in bijection with the subsets of {1, ..., n} of cardinality at least n − t. Since

n− t = t+ 1, we have

ε+ ε = 2n,

from which ε = 2n−1. Therefore C is a perfect code, since

|C | = 2 =
2n

2n−1
=

2n∑t
i=0

(
n
i

) .
Another important example is the following.

41

Example 3.15. The binary code G23 ≤ F23
2 with generator matrix

G =



1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1

0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 1

0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0

0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1

0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 1 0 1 1

0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1 0 1 1 1

0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1 0

0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 0 0 0


is perfect. It has dimension 12 and minimum distance 7. It is a famous object in coding

theory, known as the binary Golay code. The extension of the Golay code (Defini-

tion 2.54) has length 24, dimension 12, and minimum distance 8. It has been used by the

spacecrafts Voyager 1 and Voyager 2 to transmit pictures of Jupiter and Saturn in 1979,

1980, and 1981.

It is interesting to observe that there are no perfect codes C ⊆ Fnq with |C | ≥ 2 and

even minimum distance.

Proposition 3.16. Let C ⊆ Fnq be a code with |C | ≥ 2 and with even minimum distance.

Then C is not perfect.

Proof. Let d = 2s be the minimum distance of the code C . Note first that s ≥ 2 and

that t := b(d− 1)/2c = s− 1. Take x ∈ C and pick any vector y ∈ Fnq that is at distance

exactly s from x.

We claim that there is no codeword z ∈ C with y ∈ BH
t (z). By definition, z /∈ BH

t (x).

Now suppose by contradiction that there exists x′ ∈ C with x′ 6= x and y ∈ BH(x′). By

the triangular inequality we would have

dH(x′, x) ≤ dH(x′, y) + dH(y, x) ≤ s− 1 + s = d− 1,

contradicting the fact that C has minimum distance d. So

y /∈
⋃
x∈C

BH
t (x),

as claimed.

Finally, the claim implies ∣∣∣∣∣⋃
x∈C

BH
t (x)

∣∣∣∣∣ < qn,

42

i.e. (as in the proof of Theorem 3.11),

|C |
t∑
i=0

(
n

i

)
(q − 1)i < qn.

Therefore C is not perfect.

There is a family of codes that are all perfect and have minimum distance 3. They

are called Hamming codes are defined as follows.

Definition 3.17. Suppse r ≥ 3 and let H be a matrix of size r × (qr − 1)/(q − 1) whose

columns are all the non-zero vectors of Frq up to non-zero scalar multiples. The code

having H as parity-check matrix is called a q-ary Hamming code of redundancy r.

Example 3.18. The binary code C with

H =

0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1


as parity-check matrix is a Hamming code of redundancy 3. Since H has size 3 × 7, the

code C has dimension 7− 3 = 4.

Proposition 3.19. Let r ≥ 3 and let C ≤ Fnq be a q-ary Hamming code of redundancy r,

with n = (qr − 1)/(q − 1). Then C has minimum distance 3 and dimension n − r. In

particular, C is perfect.

Proof. The dimension of C is clearly n − r. Every two columns of H are linearly inde-

pendent. Moreover, it is easy to see that there exist three columns of H that are linearly

dependent. Therefore C has minimum distance exactly 3 by Corollary 2.33.

Since C has dimension n − r and n = (qr − 1)/(q − 1), the Hamming bound (Theo-

rem 3.11) reads

qn−r ≤ qn

1 + n(q − 1)
=
qn

qr
= qn−r

and is therefore met with equality.

Exercise 3.20. Compute the weight distribution of the dual of the Hamming code C

constructed in Example 3.18.

3.3 The Griesmer Bound

The Griesmer bound is a lower bound for the length of a linear code as a function of its

dimension and minimum distance. The statement is as follows.

43

Theorem 3.21 (Griesmer bound). Let C ≤ Fnq be a linear code of dimension k ≥ 1.

Let d denote the minimum distance of C . Then

n ≥
k−1∑
i=0

dd/qie.

The proof of the Griesmer bound relies on a specific code construction and its prop-

erties, which we exhamine first (recall Notation 2.48).

Definition 3.22. Let C ≤ Fnq be a linear code and let x ∈ C be a codeword of Hamming

weight w < n. The residual code Res(C , x) of C with respect to x is πS(C) ≤ Fn−wq ,

where S = {1, ..., n} \ σH(x).

Note that Res(C , x) does not depend on x itself but only on its support. Different

choices of x might give the same residual code.

We will need the following preliminary result.

Proposition 3.23. Let C ≤ Fnq be a linear code and let x ∈ C . Suppose that C has

dimension k ≥ 2 and that x has Hamming weight 1 ≤ w < min{n, qd/(q− 1)}, where d is

the minimum distance of C . Then the code Res(C , x) has dimension k− 1 and minimum

distance at least d− w + dw/qe.

Remark 3.24. Following the notation of Proposition 3.23, it is not true in general that

qd/(q − 1) ≤ n. For example, the code generated over F3 by

G =

(
1 1 1 1 1 0 0

0 0 1 1 2 1 1

)
has dimension k = 2 and minimum distance d = 5. Therefore 3d = 15 > 14 = 2n.

Proof. By Corollary 2.71 we can assume without loss of generality that x has the form

x = (1, ...1, 0, ..., 0). Let S ⊆ {1, ..., n} denote the complement of the Hamming support

of w, i.e., S = {w + 1, ..., n}. Note that S 6= ∅ as w < n by assumption. Moreover,

Res(C , x) = πS(C) by definition of residual code. We need to prove that πS(C) has

dimension k − 1 and minimum distance at least d− w + dw/qe.

The restriction of the projection πS to C is not injective, as x 6= 0 but πS(x) = 0.

Therefore πS(C) has dimension at most k − 1. Suppose towards a contradiction that its

dimension is strictly smaller than k − 1. Then there must exist a non-zero y ∈ C that is

not a multiple of x and such that πS(y) = 0. Using a counting argument one sees that

there is a field element α ∈ Fq with

|{1 ≤ i ≤ w | yi = α}| ≥ w/q.

Therefore the codeword y− αx is non-zero and has Hamming weight at most w−w/q =

w(q− 1)/q, from which d ≤ w(q− 1)/q. This contradicts our assumption on w and shows

that πS(C) has dimension exactly k − 1.

44

We now turn to the minimum distance of πS(C). Since k ≥ 2 by assumption, πS(C) ≤
Fn−wq is not the zero code. Fix any non-zero vector (zw+1, ..., zn) ∈ πS(C) and let z =

(z1, ..., zw, zw+1, ..., zn) ∈ C . Note that z cannot be a multiple of x. Arguing as before,

there exists α ∈ Fq with

|{1 ≤ i ≤ w | zi = α}| ≥ w/q.

Thus z−αx ∈ C is a non-zero vector and has weight at most w−w/q+ωH(zw+1, ..., zn). In

particular, we must have d ≤ w − w/q + ωH(zw+1, ..., zn). This implies ωH(zw+1, ..., zn) ≥
d− w + dw/qe and concludes the proof.

We can finally establish the Griesmer bound combining Proposition 3.23 with an

inductive argument.

Proof of Theorem 3.21. We proceed by induction on k ≥ 1. The result is immediate if

k = 1, as the bound reads n ≥ d. Now suppose k ≥ 2 (which automatically implies

d < n) and apply Proposition 3.23 to a minimum weight codeword x ∈ C (note that

d < qd/(q − 1) as well). We obtain the code Res(C , x) of dimension k − 1 and minimum

distance d′ ≥ dd/qe. Applying the induction hypothesis to Res(C , x) we get

n− d ≥
k−2∑
i=0

dd′/qie ≥
k−2∑
i=0

dd/qi+1e,

from which

n ≥ d+
k−2∑
i=0

dd/qi+1e = d+
k−1∑
i=1

dd/qie =
k−1∑
i=0

dd/qie.

This concludes the proof.

Example 3.25. The ternary Golay code G11 ≤ F11
3 is the code over F3 with parity-

check matrix

H =


1 1 1 2 2 0 1 0 0 0 0

1 1 2 1 0 2 0 1 0 0 0

1 2 1 0 1 2 0 0 1 0 0

1 2 0 1 2 1 0 0 0 1 0

1 0 2 2 1 1 0 0 0 0 1

 ∈ F5×11
3 .

It has length 11, dimension 11 − 5 = 6 and minimum distance 5. The Griesmer bound

for C reads

11 ≥
5∑
i=0

d5/3ie = 11.

Therefore G11 meets it with equality. The extended ternary Golay code is G ext
11 ≤ F12

3 ;

see Definition 2.54. It can be checked that it has length 12, dimension 6 and minimum

distance 6. The Griesmer bound for G ext
11 reads

12 ≥
5∑
i=0

d6/3ie = 12.

45

Therefore G ext
11 also meets the Griesmer bound.

Exercise 3.26. Use the statement of the Griesmer bound to establish the Singleton

bound for linear codes C ≤ Fnq of dimension k ≥ 1.

3.4 The Plotkin Bound

In this section we prove a bound on the cardinality of a possibly non-linear code. It is

called Plotkin bound and its proof combines a double-counting argument with the following

analysis result.

Lemma 3.27 (Cauchy-Schwarz inequality). Let ` ≥ 1 be an integer and let v, w ∈ R`.

We have (∑̀
j=1

v2j

)
·

(∑̀
j=1

w2
j

)
≥

(∑̀
j=1

vjwj

)2

.

Theorem 3.28 (Plotkin bound). Let C ⊆ Fnq be a code with |C | ≥ 2. Denote by d the

minimum distance of C and suppose that qd > (q − 1)n. We have

|C | ≤
⌊

qd

qd− (q − 1)n

⌋
.

Proof. We will evaluate the sum

Σ :=
∑
x∈C

∑
y∈C

dH(x, y)

in two different ways. For ease of notation we denote by M the cardinality of C . Since C

has minimum distance d, we have

Σ ≥ dM(M − 1). (3.2)

On the other hand, observe that for vectors x, y ∈ Fnq one has dH(x, y) =
∑n

i=1 δ(xi, yi),

where for all α, β ∈ Fq we let δ(α, β) := 1 if α 6= β, and δ(α, β) := 0 otherwise. Therefore

Σ =
n∑
i=1

∑
x∈C

∑
y∈C

δ(xi, yi) =
n∑
i=1

∑
α∈Fq

∑
x∈C
xi=α

∑
y∈C

δ(α, yi).

For α ∈ Fq and i ∈ {1, ..., n}, let εα,i := |{x ∈ C | xi = α}|. With this notation we can

re-write Σ as

Σ =
n∑
i=1

∑
α∈Fq

|{(x, y) ∈ C | xi = α, yi 6= α}|

46

=
n∑
i=1

∑
α∈Fq

εα,i(M − εαi
)

= nM2 −
n∑
i=1

∑
α∈Fq

ε2α,i.

For all i ∈ {1, ..., n} we now apply the Cauchy-Schwarz inequality to the vectors

v = (1, ..., 1) ∈ Rq and w = (εα,i | α ∈ Fq) ∈ Rq, obtaining

q
∑
α∈Fq

ε2α,i ≥

∑
α∈Fq

εα,i

2

= M2.

Therefore

Σ ≤ nM2 − nM2/q = nM2(q − 1)/q. (3.3)

Combining (3.2) with (3.3) we obtain dM(M − 1) ≤ nM2(q − 1)/q. Dividing by M and

re-arranging the terms one gets

M ≤ qd

qd− (q − 1)n
,

which implies the desired bound.

We conclude the section by introducing a family of codes that meet the Plotkin bound.

Definition 3.29. Let r ≥ 3 be an integer. A simplex code of dimension r is the dual

of a Hamming code of redundancy r; see Definition 3.17.

Simplex codes have an extremely regular weight distribution.

Proposition 3.30. Let Sr be a simplex code of dimension r. Then all the non-zero

codewords of Sr have Hamming weight exactly qr−1.

Proof. By Theorem 2.64, Sr has a generator matrix whose columns are all the vectors

of Frq, up to non-zero scalar multiples. Fix any non-zero codeword x ∈ Sr. Then there

exists a non-zero vector y ∈ Frq with x = y · H. Now observe that for every non-zero

y ∈ Frq there are exactly (qr−1 − 1)/(q − 1) non-zero vectors h ∈ Frq with 〈y, h〉 = 0, up

to non-zero scalar multiples. Therefore there are precisely (qr−1 − 1)/(q − 1) columns h

of H for which 〈y, h〉 = 0. This shows that x has Hamming weight

qr − 1

q − 1
− qr−1 − 1

q − 1
= qr−1,

as desired.

Simplex codes meet the Plotking bound, as the following example shows.

47

Example 3.31. Let Sr be a simplex code of dimension r. By Proposition 3.30, Sr has

minimum distance qr−1. The Plotkin bound reads

|Sr| ≤

⌊
q · qr−1

q · qr−1 − (q − 1) · qr−1
q−1

⌋
= qr.

Since Sr has dimension r, the Plotkin bound is met with equality.

3.5 Other Exercises

Exercise 3.32. • Find all the minimal information sets of the code C ≤ F6
5 gener-

ated by the matrix

G =

2 1 3 0 1 4

0 3 3 1 1 4

1 1 2 0 4 1

 .

• Is the code C MDS? Justify your answer.

• Compute a parity-check matrix H of C .

• Find all the minimal information set of C ⊥.

• Compute the minimum distance of C ⊥.

Exercise 3.33. 1. Are there values of α, β, γ, δ ∈ F2 for which

G =

(
1 0 α β

0 1 γ δ

)
∈ F2×4

2

generates an MDS code? Justify your answer.

2. Are there values of α, β, γ, δ ∈ F3 for which

G =

(
1 0 α β

0 1 γ δ

)
∈ F2×4

3

generates an MDS code? Justify your answer.

Exercise 3.34. Let C ≤ Fnq be an MDS code with minimum distance d ≥ 3 and

dimension k.

1. Let S = {1, 2, ..., n− d+ 3} and C ′ = πS(C). Show that |C | = |C ′| and that C ′ has

minimum distance at least 3.

2. Use the Hamming bound on C ′ to show that k ≤ q − 1.

Exercise 3.35. Let C be the code of Example 3.18. Find all the minimal information

sets of C and C ⊥.

48

Exercise 3.36 (solved in Appendix C). Use the Griesmer bound to show that any

binary linear code C ≤ Fn2 with dimension k ≥ 2 and minimum distance d = 3 satisfies

k ≤ n− 3. What would the Singleton bound say about k?

Exercise 3.37. Consider the binary Hamming code C having

H :=

1 0 0 1 1 0 1

0 1 0 1 0 1 1

0 0 1 0 1 1 1


as a parity check matrix. Compute the parameters of the residual code of C with respect

to the codeword (1, 1, 0, 1, 0, 0, 0).

Exercise 3.38. Is there a code C ⊆ F18
2 with minimum distance 10 and cardinality

|C | = 11? Justify your answer.

Exercise 3.39. For each of the following 3-tuples (q, n, d) compute what the Single-

ton, Hamming, Griesmer and Plotkin (when applicable) bounds say about the dimension

(equivalently, about the cardinality) of a linear code C ≤ Fnq with minimum distance d.

Regarding the Griesmer bound, proceed as in Exercise 3.36.

q n d

2 13 5
3 13 5
2 13 3
3 13 3
2 19 4
3 19 4
2 17 5
3 17 5
2 7 3
3 7 3

Exercise 3.40. For each of the following 3-tuples (q, n, d) compute what the Singleton,

Hamming and Plotkin (when applicable) bounds say about the dimension (equivalently,

about the cardinality) of a linear code C ≤ Fnq with minimum distance d.

q n d

2 8 6
3 8 6
4 8 6
5 8 6
7 8 6
8 8 6

Exercise 3.41. Show that for all prime powers q and for all integers n, t ≥ 1 with n ≤ q

and 1 ≤ t < n/2 we have
t∑
i=0

(
n

i

)
(q − 1)iqn−2t ≤ qn.

49

Exercise 3.42. 1. Check that the existence of a binary linear code C ≤ F13
2 of di-

mension 6 and minimum distance 5 is in principle allowed by the Singleton, the

Hamming and the Griesmer bounds (the Plotkin bound cannot be applied).

2. Show that such a code does not exist as follows:

(a) prove first that if such a code C existed, then a code D ≤ F8
2 of dimension 5

and minimum distance at least 3 would exist;

(b) then prove that the code D cannot exist.

Exercise 3.43. Show that all simplex codes meet the Griesmer bound.

50

Chapter 4

Reed-Solomon and Goppa Codes

In this chapter we study Reed-Solomon and Goppa codes. Reed-Solomon codes are one

of the most important families of error-correcting objects. They are constructed by eval-

uating univariate polynomials over distinct elements of the underlying finite field. Goppa

codes are currently good candidates for constructing cryptosystems that can resist quan-

tum attacks (see Chapter 8).

4.1 Reed-Solomon Codes

We start by defining Reed-Solomon codes. In fact, the codes defined in this section are

sometimes called generalized Reed-Solomon codes.

In the sequel, for k ≥ 0 we let Fq[X]<k denote the Fq-linear space of univariate poly-

nomials of degree strictly smaller than k. Recall that the zero polynomial has degree −∞
by definition and thus belongs to Fq[X]<k. Note moreover that Fq[X]<k has dimension k

over Fq with basis {1, X,X2, ..., Xk−1}.

Definition 4.1. Let 0 ≤ k ≤ n be integers. Suppose q ≥ n and let P = (α1, ..., αn) be an

n-tuple of distinct elements of Fq. The Reed-Solomon code associated with (q, n, k,P)

is

RSq(n, k,P) := {(p(α1), ..., p(αn)) | p ∈ Fq[X]<k} ≤ Fnq .

It is important to note that Reed-Solomon codes only exist over sufficiently large fields.

That’s the main limitation of these codes.

Example 4.2. Let F4 = F2[α] be the finite field with 4 elements, with field equation

α2 +α+ 1 = 0. Define the 4-tuple P = (0, 1, α, α2) = (0, 1, α, α+ 1). If n = 4 and k = 2,

then RS4(4, 2,P) is the set of the evaluations at P of the polynomials in F4[X]<2. These

are the sixteen polynomials in

{β0 + β1X | β0, β1 ∈ F4}.

51

For example, evaluating 1 + αX we obtain the codeword

x = (1, 1 + α, 1 + α2, 1 + α(α + 1)) = (1, 1 + α, α, 0) ∈ F4
4.

Note that x has Hamming weight 3. Moreover, a generator matrix of our RS4(4, 2,P) is

G =

(
1 1 1 1

0 1 α α + 1

)
and a parity-check matrix is

H =

(
1 + α α 1 0

α 1 + α 0 1

)
.

The next result computes the dimension and minimum distance of Reed-Solomon

codes. In particular, it shows that they are MDS.

Theorem 4.3. Let (q, n, k,P) be as in Definition 4.1. Then RSq(n, k,P) has dimension

k and minimum distance n− k + 1.

Proof. Let ϕ : Fq[X]<k → Fnq be the evaluation map at the points of P = (α1, ..., αn),

i.e., ϕ(p) = (p(α1), ..., p(αn)) for all p. It is easy to check that ϕ is Fq-linear and that the

code RSq(n, k,P) is its image.

If k = 0 then RSq(n, k,P) is the zero code and its minimum distance is n + 1, as

desired. We henceforth assume k ≥ 1. We will show that for every non-zero polynomial

p ∈ Fq[X]<k we have ωH(ϕ(p)) ≥ n− k + 1. This immediately implies that RSq(n, k,P)

has dimension k and minimum distance at least n− k + 1.

Suppose towards a contradiction that ωH(ϕ(p)) ≤ n − k for a non-zero polynomial

p ∈ Fq[X]<k. Then p has at least n− (n−k) = k distinct roots and degree strictly smaller

than k. Therefore it must be the zero polynomial, a contradiction.

To conclude that RSq(n, k,P) has minimum distance exactly n−k+1 (and is therefore

MDS) it suffices to apply the Singleton bound (Theorem 3.1).

The proof of the previous theorem also shows the following.

Proposition 4.4. Let q, n and P = (α1, ..., αn) be as in Definition 4.1. The evaluation

map ϕ : Fq[X]<n → Fnq defined by ϕ(p) := (p(α1), ..., p(αn)) for all p ∈ Fq[X]<n is an

Fq-isomorphism.

4.2 The Berlekamp-Welch Algorithm

Reed-Solomon codes can be efficiently decoded. The algorithm that we now describe is

due to Berlekamp and Welch, and attempts to reconstruct the polynomial p ∈ Fq[X]<k

52

that gives rise to the transmitted codeword via evaluation. In this section we follow the

notation of the previous one.

Algorithm 4.5 (Berlekamp-Welch). The inputs are:

• a prime power q, integers n ≥ k ≥ 1, d := n− k + 1;

• an integer 0 < ε < d/2 (an estimate for the number of errors);

• the list of distinct evaluation points P = (α1, ..., αn) ∈ Fnq ;

• the received vector y /∈ RSq(n, k,P).

Proceed as follows:

1. Use linear algebra (solve a linear system) and look for a non-zero polynomial E ∈
Fq[X] of degree exactly ε and a polynomial N ∈ Fq[X] of degree at most ε+ k − 1

such that

yiE(αi) = N(αi) for all 1 ≤ i ≤ n.

2. If such polynomials do not exist or E does not divide N , then return a failure

message. Otherwise let p̃ := N/E.

3. If dH(y, (p̃(α1), ..., p̃(αn))) > ε then return a failure message, otherwise return the

vector (p̃(α1), ..., p̃(αn)).

Next, we show that Algorithm 4.5 terminates correctly.

Theorem 4.6. Let (q, n, k,P) be as in Definition 4.1. Assume k ≥ 1 and define d = n−
k+ 1. Let 1 < ε < d/2 be an integer, x ∈ RSq(n, k,P) and y ∈ Fnq with 1 ≤ dH(x, y) ≤ ε.

Then Algorithm 4.5 returns x.

Proof. By the definition of RSq(n, k,P), there exists a polynomial p ∈ Fq[X]<k such that

(p(α1), ..., p(αn)) = x. Such a polynomial is in fact unique by Proposition 4.4.

1. We start by showing that there exist a non-zero polynomial E ∈ Fq[X] of degree

exactly ε and a polynomial N ∈ Fq[X] of degree at most ε+ k − 1 such that

yiE(αi) = N(αi) for all 1 ≤ i ≤ n (4.1)

and N/E = p. Take

E := Xε−dH(y,x)
∏

j∈{1,...,n}
yj 6=p(αj)

(X − αj), N := p · E.

We clearly have N/E = p. Now fix 1 ≤ i ≤ n and observe the following:

• if E(αi) = 0, then N(αi) = 0 as well;

• if E(αi) 6= 0, then yi = p(αi) by the definition of E and therefore yiE(αi) =

N(αi) by the definition of N .

53

Therefore in any case we have that (4.1) holds.

2. Now we show that if (E,N) and (E ′, N ′) are pairs of polynomials that satisfy (4.1),

then N/E = N ′/E ′. Consider the polynomial R = NE ′ − N ′E. Since (4.1) holds,

we have R(αi) = 0 for all 1 ≤ i ≤ n. On the other hand, R has degree upper

bounded by 2ε + k − 1 < d + k − 1 = n. Since the αi’s are distinct, we conclude

that R is the zero polynomial. Hence N/E = N ′/E ′, as claimed.

3. Combining the previous two steps we conclude that the algorithm must compute

p̃ = p and thus returns (p(α1), ..., p(αn)) = x, as desired.

Example 4.7. Let C = RS4(4, 2,P) be the code of Example 4.2. We use the Berlekamp-

Welch algorithm to decode the vector (1, 1 +α, α, α) ∈ F4
4 to a codeword of C . Note that

y /∈ C , as y ·H> 6= 0. Take ε = 1 < dH(C)/2. We want to find polynomials E = E0+E1X

and N = N0 +N1X +N2X
2 with E1 6= 0 and yiE(αi) = N(αi) for 1 ≤ i ≤ 4. The latter

conditions correspond to a homogeneous linear system with 5 variables and 4 equations:
E0 = N0,

(1 + α)(E0 + E1) = N0 +N1 +N2,

α(E0 + E1α) = N0 +N1α +N2(α + 1),

αE0 + E1 = N0 +N1(α + 1) +N2α.

If we order the variables as (N0, N1, N2, E0, E1), the matrix of the system is
1 0 0 1 0

1 1 1 1 + α 1 + α

1 α 1 + α α α + 1

1 α + 1 α α 1

 ,

whose reduced row-echelon form is
1 0 0 0 α + 1

0 1 0 0 0

0 0 1 0 α

0 0 0 1 α + 1

 .

Therefore a solution with E1 6= 0 is (α+1, 0, α, α+1, 1), corresponding to the polynomials

E = α+ 1 +X and N = α+ 1 +αX2. One checks that E divides N and that p̃ = N/E =

1 +αX. Finally, the evaluation of p̃ at the points of P is (1, 1 +α, α, 0) ∈ C , which is at

distance 1 from y.

We conclude this section with an analysis of the arithmetic complexity of the Berlekamp-

Welch algorithm. We will follow the terminology and apply the results of Appendix B.

Remark 4.8. In Algorithm 4.5, finding N and E corresponds to a linear system in

(ε + k) + (ε + 1) unknowns and n equations. We therefore need to solve a system of n

equations in 2ε + k + 1 < n + 2 unknowns. We also impose the E has degree exactly ε,

54

and this corresponds to introducing a new equation. Therefore the final system has n+ 1

equations and at most n+ 1 variables. Using Gaussian elimination, such a system can be

solved in O(n3) operations.

The polynomial division N/E can definitely be performed in O(n2) operations using

the long division algorithm, as the degrees of N and E are both upper bounded by n.

Therefore the Berlekamp-Welch algorithm for decoding a Reed-Solomon code has

arithmetic complexity in O(n3).

4.3 Goppa Codes

Goppa codes form another important class of error-correcting objects. They admit several

descriptions and here we give one based on congruences modulo polynomials. In the

sequel, m and n are positive integers with qm ≥ n.

Definition 4.9. Let L = (α1, ..., αn) be an n-tuple of distinct elements of Fqm , and let

g ∈ Fqm [X] be a polynomial of degree at least 1 with g(αi) 6= 0 for all i ∈ {1, ..., n}. For

each i ∈ {1, ..., n} fix a polynomial hi ∈ Fqm [X] with (X−αi)hi ≡ 1 mod g. The Goppa

code associated with L and g is

Γq,m(n, g,L) :=

{
x ∈ Fnq |

n∑
i=1

xihi ≡ 0 mod g

}
≤ Fnq .

Remark 4.10. The Goppa code Γq,m(n, g,L) is well-defined. Indeed, the polynomials

hi, for 1 ≤ i ≤ n, in Definition 4.9 exist because g and X − αi are coprime (explain how

this shows the existence of h1, ..., hn). Moreover, each hi is unique modulo g. Therefore

if h′1, ..., h
′
n are other polynomials with the same properties as h1, ..., hn, then{
x ∈ Fnq |

n∑
i=1

xihi ≡ 0 mod g

}
=

{
x ∈ Fnq |

n∑
i=1

xih
′
i ≡ 0 mod g

}
.

All of this shows that Γq,m(n, g,L) is well-defined.

Exercise 4.11. Following the notation of Definition 4.9, show that for all i ∈ {1, ..., n}
we have

hi = −g − g(αi)

X − αi
g(αi)

−1.

Example 4.12. Take q = 2, m = 2 and n = 4. We construct F4 as F2[α] with α2 = α+1.

Let L = (0, 1, α, α + 1) and g = X2 + X + α. We have g(0) = g(1) = g(α + 1) = α and

g(α) = α + 1. Therefore we can use L and g to construct Γ2,2(4, g,L). The inverses of

X − αi modulo g are (please check the computations yourself):

h1 = h4 = (α + 1)X + (α + 1), h2 = (α + 1)X, h3 = (α + 1)X + α.

55

The next result gives lower bounds for the dimension and the minimum distance of

Goppa codes. We state the result without proof.

Theorem 4.13. In the notation of Definition 4.9, the Goppa code Γq,m(n, g,L) has

dimension at least n −ms over Fq and minimum distance at least s + 1, where s ≥ 1 is

the degree of the polynomial g.

Exercise 4.14. Construct the finite field F16 as F2[α], where α4 + α3 + 1 = 0. Let

L = {αi | 2 ≤ i ≤ 13} and g = (x + α)(x + α14). Write down polynomials h1, ..., h12
defining the Goppa code Γ2,4(12, g,L). Apply Theorem 4.13 to obtain lower bounds for

the dimension and minimum distance of Γ2,4(12, g,L).

4.4 Other Exercises

Exercise 4.15. List all the codewords of the code C = RS(4, 2,P) of Example 4.2.

Verify that every non-zero codeword has Hamming weight at least 3.

Exercise 4.16. Let C = RS(4, 2,P) be the code of Example 4.2. We use the Berlekamp-

Welch algorithm to decode the vectors

(1, 1, α, α + 1), (α, α, α, 1), (1, α, α, 0).

Exercise 4.17. Let q = 5 and P = (1, 3, 2, 4, 0). Write down a basis of the polynomials

defining C = RS(5, 3,P) and a generator matrix for C . Choose a vector x ∈ C and

change a single entry of your choice obtaining a vector y. Check that y /∈ C and use the

Berlekamp-Welch algorithm to decode y.

Exercise 4.18. Repeat Exercise 4.17 with C = RS(5, 2,P).

56

Chapter 5

Duality Theory

In this chapter we study how a code and its dual relate to each other. More precisely, we

will see how information on a code C gives information on C ⊥. In this chapter we only

treat linear codes.

5.1 Preliminary Results

We start with a preliminary result that will play a key role for us. In the sequel, we follow

the notation of Section 2.6.

Proposition 5.1. Let C ≤ Fnq be a code and let S ⊆ {1, ..., n} be a set of cardinality s.

We have

|C (S)| = |C |
qn−s

|C ⊥(Sc)|.

Proof. We view Fnq as a (trivial) code and write C (S) = C ∩ Fnq (S). Taking duals gives

C (S)⊥ = (C ∩ Fnq (S))⊥ = C ⊥ + Fnq (S)⊥,

where the last equality follows from part 6 of Theorem 2.64. By Exercise 2.66 we have

Fnq (S)⊥ = Fnq (Sc), from which C (S)⊥ = C ⊥ + Fnq (Sc). We now take dimensions in the

previous identity using part 3 of Theorem 2.64, obtaining

n− dim(C (S)) = dim(C ⊥) + dim(Fnq (Sc))− dim(C ⊥(Sc)).

Since dim(C ⊥) = n− dim(C) and dim(Fnq (Sc)) = |Sc| = n− |S|, we conclude

dim(C (S)) = dim(C)− (n− |S|) + dim(C ⊥(Sc)),

which is the desired identity.

Another preliminary result that we will need is an inversion formula for functions

57

defined on the power set of {1, ..., n}. It is a specialization of the Möebius Inversion

Formula for posets. The proof is omitted.

Lemma 5.2. Let f : 2{1,...,n} → R be any function. Define the function g : 2{1,...,n} → R
by g(S) :=

∑
T⊆S f(T) for all S ⊆ {1, ..., n}. Then for all S ⊆ {1, ..., n} we have

f(S) =
∑
T⊆S

(−1)|S|−|T | g(T).

As an application of Lemma 5.2, we prove the well-known inclusion-exclusion formula

for sets.

Example 5.3. Let A1, ..., An ⊆ A be sets. We have

|A1 ∪ · · · ∪ An| =
∑

∅6=S⊆{1,...,n}

(−1)|S|+1

∣∣∣∣∣⋂
i∈S

Ai

∣∣∣∣∣ . (5.1)

To see this, put A := A1∪· · ·∪An. For a ∈ A we let I(a) := {1 ≤ i ≤ n | a ∈ Ai}. Define

a function f : 2{1,...,n} → R by f(S) := |{a ∈ A | I(a)c = S}| for all S ⊆ {1, ..., n}. For

S ⊆ {1, ..., n} we let

γ(S) :=
⋂
i∈Sc

Ai,

with the convention that γ({1, ..., n}) = A.

Next, define g : 2{1,...,n} → R by g(S) :=
∑

T⊆S f(T). It easily follows from the

definitions that for a ∈ A and S ⊆ {1, ..., n} one has

I(a)c ⊆ S if and only if a ∈ γ(S).

This implies that g(S) = |γ(S)| for all S ⊆ {1, ..., n}.

Finally, observe that f({1, ..., n}) = 0, as all elements of A belong to Ai for some i.

On the other hand, by Lemma 5.2 we have

f({1, ..., n}) =
∑

T⊆{1,...,n}

(−1)n−|T |g(T)

= g({1, ..., n}) +
∑

T({1,...,n}

∣∣∣∣∣ ⋂
i∈T c

Ai

∣∣∣∣∣ (−1)n−|T |

= |A|+
∑

∅6=T⊆{1,...,n}

∣∣∣∣∣⋂
i∈T

Ai

∣∣∣∣∣ (−1)|T |,

from which the identity in (5.1) follows.

58

5.2 The MacWilliams Identities

In this section we prove one of the most elegant result of coding theory, namely, the

MacWilliams identities.

Recall from Section 2.5 that Wi(C) denotes the number of weight i codewords in C ,

and that (W0(C), ...,Wn(C)) is called the weight distribution of C . The MacWilliams

identities establish a linear relation between the weight distribution of a code and the

weight distribution of its dual code. They are among the most elegant results in coding

theory.

Theorem 5.4 (MacWilliams identities). Let C ≤ Fnq be a code. For all 0 ≤ j ≤ n we

have

Wj(C
⊥) =

1

|C |

n∑
i=0

Wi(C)

j∑
t=0

(
n− t
j − t

)(
n− i
t

)
(−1)j−tqt.

Proof. For all S ⊆ {1, ..., n} let f(S) := |{x ∈ C ⊥ | σH(x) = S}| and g(S) :=
∑

T⊆S f(T).

By definition, we have g(S) = |C ⊥(S)| for all S. Using Lemma 5.2 we then see that for

all S ⊆ {1, ..., n} of cardinality j we have

f(S) =

j∑
t=0

∑
T⊆S
|T |=t

|C ⊥(T)| (−1)j−t.

Applying Proposition 5.1 we obtain

f(S) =

j∑
t=0

∑
T⊆S
|T |=t

|C ⊥|
qn−t

|C (T c)| (−1)j−t =
1

|C |

j∑
t=0

qt(−1)j−t
∑
T⊆S
|T |=t

|C (T c)|

for all S ⊆ {1, ..., n} with |S| = j. Summing over all the sets S of size j we get

Wj(C
⊥) =

1

|C |

j∑
t=0

qt(−1)j−t
∑

S⊆{1,...,n}
|S|=j

∑
T⊆S
|T |=t

|C (T c)|. (5.2)

Next, observe that for a fixed 0 ≤ t ≤ n we have (explain the single passages)

∑
S⊆{1,...,n}
|S|=j

∑
T⊆S
|T |=t

|C (T c)| =
∑

S⊆{1,...,n}
|S|=j

∑
T⊇Sc

|T |=n−t

|C (T)| =
(
n− t
j − t

) ∑
T⊆{1,...,n}
|T |=n−t

|C (T)|. (5.3)

Finally, counting in two ways the elements of the set

{(T, x) | T ⊆ {1, ..., n}, x ∈ C , |T | = n− t, σH(x) ⊆ T}

59

one obtains ∑
T⊆{1,...,n}
|T |=n−t

|C (T)| =
n∑
i=0

Wi(C)

(
n− i
t

)
. (5.4)

Combining equations (5.2), (5.3) and (5.4) we finally get

Wj(C
⊥) =

1

|C |

j∑
t=0

qt(−1)j−t
(
n− t
j − t

) n∑
i=0

Wi(C)

(
n− i
t

)
,

which is the desired expression up to re-arranging the terms.

Example 5.5. Let q = 3 and let C ≤ F3
3 be the 1-dimensional code generated by (0, 1, 2).

We have W0(C) = 1, W1(C) = W3(C) = 0 and W2(C) = 2. We can compute W2(C ⊥)

using the MacWilliams identities as

W2(C
⊥) =

1

3

(
2∑
t=0

(
3− t
2− t

)(
3

t

)
(−1)2−t 3t + 2

2∑
t=0

(
3− t
2− t

)(
1

t

)
(−1)2−t 3t

)
.

Exercise 5.6. Use the MacWilliams identities to give a closed formula for the number

of vectors x ∈ F4
q of weight j and such that x1 + x2 = x3 + x4 = 0.

5.3 Computation of Some Weight Distributions

In this section we show an important application of the MacWilliams identities, namely,

the computation of the weight distribution of certain linear codes. The idea behind the

approach is simple but quite powerful: for some codes C the weight distribution is difficult

to explicitly compute, but the weight distribution of their dual codes C ⊥ is instead easy

to write down. Therefore the weight distribution of C can be computed from that of C ⊥

via the MacWilliams identities.

Corollary 5.7. Let r ≥ 3 and n = (qr − 1)/(q − 1). Let C ≤ Fnq be a Hamming code of

redundancy r. For all 0 ≤ i ≤ n we have

Wi(C) =
i∑
t=0

(
n− t
i− t

)(
n

t

)
(−1)i−tqt−r + (qr − 1)

i∑
t=0

(
n− t
i− t

)(
n− qr−1

t

)
(−1)i−tqt−r.

Proof. The dual C ⊥ is a simplex code; see Definition 3.29. We computed the weight

distribution of C ⊥ in Proposition 3.30 as W0(C ⊥) = 1, Wqr−1(C ⊥) = |C ⊥| − 1 = qr − 1,

and Wj(C ⊥) = 0 for j /∈ {0, qr−1}. Therefore the formula follows from the MacWilliams

identities (Theorem 5.4).

If C ≤ Fn2 is the even weight code of Example 2.22, then Wi(C) = 0 if i is odd,

while Wi(C) =
(
n
i

)
if i is even. The next result uses the MacWilliams identities to give a

different formula for such a weight distribution.

60

Corollary 5.8. The even weight code C ≤ Fnq of Example 2.22 was weight distribution

given by

Wi(C) =

(
n

i

)
(−1)i +

i∑
t=1

(
n− t
i− t

)(
n

t

)
(−1)i−t 2t−1, 0 ≤ i ≤ n.

Proof. It is easy to see (exercise) that the even weight code C is the dual of the n-times

repetition code, i.e., C ⊥ = {(0, ..., 0), (1, ..., 1)} ≤ Fn2 . Therefore by Theorem 5.4 we have

Wi(C) =

(
i∑
t=0

(
n− t
i− t

)(
n

t

)
(−1)i−t 2t−1

)
+

1

2

(
n

i

)
(−1)i

for all i ∈ {0, ..., n}. This is the desired expression up to re-arranging the terms.

Exercise 5.9. Use the MacWilliams identities and the fact that (Fnq)⊥ = {0} to give a

formula for the number of vectors x ∈ Fnq with Hamming weight i.

5.4 Duality and MDS Codes

In this section we show that the family of MDS codes is closed under duality, i.e., that

the dual of an MDS code is MDS. We also prove that all MDS codes C ≤ Fnq of the same

dimension share the same weight distribution, and compute it explicitly.

Theorem 5.10. Let C ≤ Fnq be an MDS code of minimum distance d. Then C ⊥ is MDS

with minimum distance n− d+ 2.

Proof. Let k denote the dimension of C . The result is immediate if k ∈ {0, n}, so from now

on we assume 1 ≤ k ≤ n− 1. By definition, the minimum distance of C is d = n− k+ 1.

Fix any subset S ⊆ {1, ..., n} with |S| = k. We have |Sc| = n− k = d− 1, from which

C (Sc) = {0}. By Proposition 5.1 we have

|C ⊥(S)| = qn−k

qn−k
|C (Sc)| = 1.

This implies |C ⊥(S)| = 1. Since S was an arbitrary set of cardinality k, it must be that

dH(C ⊥) ≥ k + 1 = n− (n− k) + 1. We conclude that C ⊥ attains the Singleton bound of

Theorem 3.1 and is therefore MDS.

We now turn to the weight distribution of MDS codes.

Lemma 5.11. Let C ≤ Fnq be an MDS code of dimension k and minimum distance

d = n − k + 1. Let S ⊆ {1, ..., n} be a subset of cardinality s. We have |C (S)| = 1 if

0 ≤ s ≤ d− 1 and |C (S)| = qs−d+1 otherwise.

61

Proof. The result is immediate if k = 0 or if k ≥ 1 and s ≤ d− 1. We henceforth assume

k ≥ 1 and s ≥ d. By Theorem 5.4 we have

|C (S)| = qn−d+1

qn−s
|C ⊥(Sc)| = qs−d+1,

where the last equality follows from the fact that C ⊥ has minimum distance n− d+ 2 by

Theorem 5.10.

Exercise 5.12. Let C ≤ Fnq be a non-zero MDS code of minimum distance d. Show

that for every S ⊆ {1, ..., n} with |S| = d there exist exactly q− 1 codewords x ∈ C with

σH(x) = S.

Finally, we compute the weight distribution of an MDS code. The proof is left to the

reader; see Exercise 5.14.

Theorem 5.13. Let C ≤ Fnq be an MDS code of minimum distance d. For all 0 ≤ i ≤ n

we have

Wi(C) =
d−1∑
t=0

(
n

i

)(
i

t

)
(−1)i−t +

n∑
t=d

(
n

i

)(
i

t

)
(−1)i−tqt−d+1.

Exercise 5.14. Use Lemma 5.11 to prove Theorem 5.13. You can proceed as follows.

For all S ⊆ {1, ..., n} let f(S) be the number of x ∈ C with σH(x) = S. We can write

Wi(C) =
∑

S⊆{1,...,n}
|S|=i

f(S).

Then let g(S) =
∑

T⊆S f(T) for all S ⊆ {1, ..., n} and observe that g(S) = |C (S)| for

all S. Finally, combine Lemma 5.11 with Lemma 5.2.

Exercise 5.15. Check that Theorem 5.13 returns the weight distribution of the zero

code and of Fnq for d = n+ 1 and d = 1, respectively.

As a corollary of Theorem 5.13, we can obtain strong constraints on the parameters of

linear MDS codes. More precisely, the following result shows that MDS codes only exist

over sufficiently large fields.

Corollary 5.16. Suppose that there exists a k-dimensional MDS code C ≤ Fnq of mini-

mum distance d. The following hold:

1. if k ≥ 2, then d ≤ q;

2. if k ≤ n− 2, then k + 1 ≤ q.

Proof. 1. Since k ≥ 2 we have d + 1 = n − k ≤ n and so
(
n
d+1

)
> 0. Therefore using

Theorem 5.13 we compute

WH
d+1(C)(
n
d+1

) =
d−1∑
t=0

(
d+ 1

t

)
(−1)d+1−t +

(
d+ 1

d

)
(−1)q +

(
d+ 1

d+ 1

)
(−1)0q2

62

=
d−1∑
t=0

(
d+ 1

t

)
(−1)d+1−t + (−(d+ 1)q + q2)

=
d+1∑
t=0

(
d+ 1

t

)
(−1)d+1−t −

d+1∑
t=d

(
d+ 1

t

)
(−1)d+1−t + (−(d+ 1)q + q2)

= 0−
d+1∑
t=d

(
d+ 1

t

)
(−1)d+1−t + (−(d+ 1)q + q2)

= d− qd− q + q2 = (1− q)(d− q).

Since WH
d+1(C) ≥ 0,

(
n
d+1

)
> 0 and q ≥ 2, we have d ≤ q, as desired.

2. If k ≤ n − 2, then n − k ≥ 2. We can therefore apply the first part to the dual

code C ⊥, which is also MDS by Theorem 5.10. We obtain n − d + 2 ≤ q, i.e.,

k + 1 ≤ q.

5.5 Other Exercises

Exercise 5.17. Use Exercise 3.34 to prove the following statement: If C ≤ Fn2 is an

MDS code, then one of the following occurs:

• C = {0},

• C = Fn2 ,

• C is the n-times repetition code,

• C is the even weight code (for this part you can use duality).

Exercise 5.18. Let C ≤ Fnq be a code of dimension k ≥ 1.

1. Show that πS(C)⊥ = πS(C ⊥(S)) for all S ⊆ {1, ..., n} (this is partially solved in

Appendix C).

2. Show that a set S ⊆ {1, ..., n} with |S| = k is a minimal information set for C if

and only if dim(C ⊥(S)) = 0.

3. Show that a set S ⊆ {1, ..., n} with |S| = k is a minimal information set for C if

and only if Sc is a minimal information set for C ⊥.

63

Chapter 6

Reed-Muller Codes

This chapter is devoted to one of the best known families of error-correcting codes, namely

Reed-Muller codes. These are defined via multivariate polynomials and although their

general theory can be developed over an arbitrary field Fq, in these notes we restrict

ourselves to the binary case. Therefore q = 2 in this chapter.

Reed-Muller codes have been extensively used, for example, for deep space exploration.

In 1969, the Mariner 6 spacecraft transmitted the first pictures of the surface of Mars

using the Reed-Muller code RM(1, 5); see Definition 6.2.

6.1 Definition and First Properties

We start by establishing the notation for this chapter.

Notation 6.1. In the sequel, for integers r ≥ 0 and m ≥ 1 we denote by F2[X1, ..., Xm]×≤r
the vector space of square-free polynomials in the variables X1, ..., Xm of total degree at

most r, where the zero polynomial has degree −∞. We also let P(m) be the list of

vectors in Fm2 sorted in lexicographic order, with 0 < 1. For example, for m = 3 we have

P(3) = ((0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)). (6.1)

Note moreover that

F2[X1, ..., Xm]×≤m = F2[X1, ..., Xm]×≤m+1 = F2[X1, ..., Xm]×≤m+2 = · · · ,

as there is no square-free polynomial in m variables of degree strictly larger than m.

Reed-Muller codes are defined as follows.

Definition 6.2. Let r ≥ 0 and m ≥ 1 be integers. Let n = 2m and P(m) = (a1, ..., an).

64

The Reed-Muller code of parameters (r,m) is

RM(r,m) := {(p(a1), ..., p(an)) | p ∈ F2[X1, ..., Xm]×≤r} ≤ Fn2 .

Example 6.3. Take r = 1 and m = 3. Then n = 8 and RM(1, 3) is generated by the

evaluations of the polynomials in {1, X1, X2, X3} at the points listed in (6.1). Therefore

a generator matrix of RM(1, 3) is

G =


1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

 .

The first properties of Reed-Muller codes are summarized in the following result.

Theorem 6.4. Let r ≥ 0 and m ≥ 1 be integers, and let n = 2m. Then RM(r,m) is a

linear code of dimension
∑r

`=0

(
m
`

)
.

Proof. Let V := F2[X1, ..., Xm]× be the space of square-free polynomials in the vari-

ables X1, ..., Xm and let ϕ : V → Fn2 be the evaluation map on P(m), i.e., ϕ(p) =

(p(a1), ..., p(an)) for all p ∈ V . Clearly, ϕ is linear. We claim that ϕ is surjective. To see

this, let 1 ≤ i ≤ n be arbitrary and let ei be the i-th element of the canonical basis of Fn2 .

Write P(m) = (a1, ..., an) and ai = (ai1, ..., aim). Define

p := (X1 − ai1 + 1) · · · (Xm − aim + 1) ∈ V

and observe that p(aj) = 0 unless j = i, in which case p(ai) = 1 (here we heavily use

the fact that we are working over F2). This shows that ei is in the image of ϕ for all

i ∈ {1, ..., n}. Therefore ϕ is surjective, as claimed.

Finally, we prove that ϕ is an isomorphism of vector spaces. As we already know

that ϕ is linear and surjective, it suffices to show that V and Fn2 have the same dimension

over F2. To prove this, observe that every element p ∈ V can be uniquely written (why?)

as

p =
m∑
`=0

∑
1≤i1<i2<···<i`≤m

pi1i2···i` X
i1
1 X

i2
2 · · ·X

i`
` , (6.2)

where p∅ is the constant term of p. From this description of the elements of V one sees

that V has dimension
∑m

`=0

(
m
`

)
= 2m = n over F2, as desired.

All of this implies that RM(r,m) is the image under the isomorphism ϕ of the linear

space F2[X1, ..., Xm]×≤r ≤ V . In particular, RM(r,m) is linear of dimension

dim(RM(r,m)) = dim
(
F2[X1, ..., Xm]×≤r

)
=

{
n if r ≥ m,∑r

`=0

(
m
`

)
if r ≤ m,

where the latter formula again follows from (6.2). Since
(
m
`

)
= 0 for ` > m we have that

65

RM(r,m) has dimension
∑r

`=0

(
m
`

)
for all r ≥ 0 and m ≥ 1.

We conclude with two observations left as exercise.

Exercise 6.5. • Show that, for all m ≥ 1, RM(0,m) is the binary repetition code

of length n = 2m defined in Example 2.7.

• Show that, for all m ≥ 1 and r ≥ m, RM(r,m) = F2m

2 .

6.2 Structure of Reed-Muller Codes

In this section we show a structural property of Reed-Muller codes, connecting them with

the Plotkin sum; see Definition 2.58. As a corollary we will obtain the minimum distance

of Reed-Muller codes.

Theorem 6.6. Let 1 ≤ r < m be integers. We have

RM(r,m) = RM(r,m− 1)⊕P RM(r − 1,m− 1).

Proof. We split the terms of any p ∈ F2[X1, ..., Xm]×≤r into those containing X1 and those

not containing X1. We can then write p = p0 + X1p1 with p0 ∈ F2[X2, ..., Xm]×≤r and

p1 ∈ F2[X2, ..., Xm]×≤r−1. Note that this defines a bijection

F2[X1, ..., Xm]×≤r → F2[X2, ..., Xm]×≤r × F2[X2, ..., Xm]×≤r−1.

If P(m) = (a1, ..., an) and P(m− 1) = (b1, ..., bn/2), then

p(a1, ..., an) = (p0(a1), ..., p0(an)) + (a11p1(a1), ..., an1p1(an))

= (p0(b1), ..., p0(bn/2), p0(b1), ..., p0(bn/2)) + (0, ..., 0, p1(b1), ..., p1(bn/2))

(write down a small example and understand why this is the case). So far we have shown

the inclusion RM(r,m) ⊆ RM(r,m− 1)⊕P RM(r − 1,m− 1). The equality follows from

Theorem 6.4 and a dimension argument.

We continue by discussing some of the consequences of Theorem 6.6. First, the theorem

gives us an inductive construction of Reed-Muller codes as follows.

Corollary 6.7. For r ≥ 0 and m ≥ 1, the Reed-Muller code RM(r,m) is given by the

recursive construction

RM(r,m) =


F2m

2 if r ≥ m ≥ 1,

〈(1, ..., 1)〉 ≤ F2m

2 if r = 0 and m ≥ 1,

RM(r,m− 1)⊕P RM(r − 1,m− 1) if 1 ≤ r < m.

Proof. Combine Exercise 6.5 with Theorem 6.6.

66

Second, Theorem 6.6 and Proposition 2.61 tell us how to compute the minimum dis-

tance of a Reed-Muller code.

Corollary 6.8. Let r ≥ 0 and m ≥ 1 be integers with m ≥ r. The minimum distance of

RM(r,m) is 2m−r.

Proof. We will show by induction on m ≥ 1 the following statement: “For all 0 ≤ r ≤ m

the code RM(r,m) has minimum distance 2m−r”.

If m = 1 the result easily follows from Corollary 6.7. Now suppose m ≥ 2. If r = 0

or r = m we can again apply Corollary 6.7. If 1 ≤ r < m, then by Theorem 6.6 we

have RM(r,m) = RM(r,m − 1) ⊕P RM(r − 1,m − 1). By the induction hypothesis,

RM(r,m−1) has minimum distance 2m−1−r and RM(r−1,m−1) has minimum distance

2m−1−r+1 = 2m−r. Therefore by Proposition 2.61 we conclude that the code RM(r,m) has

minimum distance min{2 · 2m−1−r, 2m−r} = 2m−r, as desired.

6.3 The Dual of a Reed-Muller Code

In this short section we prove the following result showing that the dual of a Reed-Muller

code is again a Reed-Muller code.

Theorem 6.9. For all r and m with 1 ≤ r ≤ m− 1 we have

RM(r,m)⊥ = RM(m− r − 1,m).

The proof of Theorem 6.9 relies on the following preliminary fact.

Lemma 6.10. For all m ≥ 2, RM(m − 1,m) is the even weight code of length 2m; see

Example 2.22 for the definition.

Proof. Evaluating a monomial µ ∈ F2[X2, ..., Xm]×≤m−1 at the points of P(m) one always

obtains a vector of even weight (explain why). Since these monomials span F2[X1, ..., Xm]×≤r,

by Example 2.22 all the codewords of RM(m−1,m) have even weight. On the other hand,

by Theorem 6.4 the code RM(m− 1,m) has dimension

m−1∑
`=0

(
m

`

)
=

m∑
`=0

(
m

`

)
− 1 = 2m − 1 = n− 1.

Therefore RM(m − 1,m) must be the even weight code of length n = 2m, again by

Example 2.22 and a dimension argument.

Proof of Theorem 6.9. By Theorem 6.4, the dimensions of the codes RM(m − r − 1,m)

and RM(r,m)⊥ are the same (check this doing the computation). Therefore it suffices to

67

show the inclusion

RM(m− r − 1,m) ⊆ RM(m, r)⊥. (6.3)

To see this, fix arbitrary polynomials p ∈ F2[X1, ..., Xm]×≤m−r−1, q ∈ F2[X1, ..., Xm]×≤r
and write P(m) = (a1, ..., an). The degree of pq is upper bounded by m − 1. Since

RM(m− 1,m) is the even weight code by Lemma 6.10, the vector ((pq)(a1), ..., (pq)(an))

has even weight. In particular,

0 =
n∑
i=1

(pq)(ai) = 〈(p(a1), ..., p(an)), (q(a1), ..., q(an))〉.

This establishes the inclusion in (6.3) and concludes the proof.

6.4 Other Exercises

Exercise 6.11. Let m ≥ 3.

1. Write down a general form for the generator matrix of RM(1,m).

2. Use Exercise 2.56 to show that RM(1,m) is equivalent to the dual of the extension

of a Hamming code.

Exercise 6.12. Find all the pairs (r,m) for which RM(r,m) is a self-dual code (recall

that a code C is self-dual if C ⊥ = C ; see also Exercise 2.92).

68

Chapter 7

Distributed Storage and Locality

Error correcting codes can also be used to store files across servers (distributed storage),

in such a way that if one or more servers fail, the file can be reconstructed entirely using

the remaining servers. In this chapter we study the basics of distributed storage and the

concept of locality.

7.1 Storage Strategies

A file is modeled as a vector v ∈ Fkq , an object that is naturally divided into k components.

We assume that every vector in Fkq is a valid file.

Observe that if we stored each component of v in a different server, and a server failed,

then it would be in general impossible to recover v from the remaining components. We

can solve this problem at the price of using more than k servers to store some redundant

information. For example, if v = (v1, v2) ∈ F2
q, then we can construct the vector x =

(v1, v2, v1 + v2) and store each component of x in a different server. Now any of the three

components of x can be recovered from the other two, and we can afford that a single

server fails.

Another strategy would be to use four servers and store two copies of the file, i.e., store

two copies of v1 and two copies of v2. This strategy, although very simple, is sometimes

used in practice.

Exercise 7.1. Assume q ≥ 3, let v = (v1, v2) ∈ F2
q and x = (v1, v2, v1 + v2, v1 − v2).

Show that any two components of x can be recovered from the other two.

The idea used to construct x from v in the previous exercise comes from coding theory.

More precisely, we select the generator matrix G of a k-dimensional code C ≤ Fnq and

store the components of x = v · G in n different servers. In other words, we use G to

create a vector with a certain redundancy from the original file v. This motivates the

following definition.

69

Definition 7.2. Let 1 ≤ s ≤ n be an integer. A linear code C ≤ Fnq is called s-

recoverable if for every S ⊆ {1, ..., n} with |S| ≤ s there are no codewords x, y ∈ C with

x 6= y but xi = yi for all i ∈ {1, ..., n} \ S.

MDS codes are particularly useful to design storage schemes. At the time of writing

these notes they are being used, for example, by Facebook to store information.

Proposition 7.3. Let C ≤ Fnq be an MDS code of dimension 1 ≤ k < n. Then C is

(n− k)-recoverable.

Proof. Let S ⊆ {1, ..., n} be any set of cardinality n − k. By Exercise 3.9, the comple-

ment {1, ..., n} \ S is a minimal information set for C . We then conclude by part 6 of

Proposition 2.79.

Therefore, in an MDS code C every (n − k) components of x ∈ C can be recovered

by the remaining ones.

Example 7.4. Let C ≤ F5
5 be the code generated by

G =

1 0 0 3 1

2 1 0 2 0

3 0 1 1 0

 .

We want to find a codeword x ∈ C knowing that x2 = 2, x3 = 1, and x5 = 4. Permuting

the rows of G we arrive at

G′ =

2 1 0 2 0

3 0 1 1 0

1 0 0 3 1

 ,

which generates the same code as G. Since x is a linear combination of the rows of G, it

must be that

x = 2 · (2, 1, 0, 2, 0) + 1 · (3, 0, 1, 1, 0) + 4 · (1, 0, 0, 3, 1).

Exercise 7.5. Let C and G be as in the previous example.

1. Find the unique codeword x ∈ C with x1 = 4, x3 = 2, x4 = 3.

2. Show that C is not 3-recoverable.

7.2 Locality

Suppose that C ≤ Fnq is a 1-recoverable code of dimension k ≥ 1. Let x ∈ C , and let

i ∈ {1, ..., n} be the index of a lost entry. By definition, xi can be recovered from the

other n − 1 components. However, downloading them from the corresponding servers is

costly, and a natural question is whether the lost entry xi can be recovered from fewer

known entries. This problem gives rise to the notion of locality.

70

Definition 7.6. Let 1 ≤ r ≤ n− 1 be an integer (in particular, n ≥ 2). A code C ≤ Fnq
of dimension k ≥ 1 has locality r if for every i ∈ {1, ..., n} there exists a set Si with the

following properties:

1. i /∈ Si,

2. |Si| ≤ r,

3. if x, y ∈ C and xj = yj for all j ∈ Si, then xi = yi.

The Si’s are called recovery sets.

The above definition guarantees that the i-th entry of a codeword x ∈ C can be

uniquely recovered by reading the entries indexed by Si. In other words, xi if a function

(not necessarily linear) of (xj | j ∈ Si).

Example 7.7. For n ≥ 2, the n-times repetition code of Example 2.7 has locality 1. As

the i-th recovery set we can take any subset Si ⊆ {1, ..., n} \ {i} of cardinality 1.

Example 7.8. The binary code C ≤ F3
2 generated by

G =

(
1 0 0

0 1 1

)
has locality 2 with recovery sets S1 = {2, 3}, S2 = {3}, S3 = {2}. The code C does not

have locality 1 because the first component of x ∈ C cannot be reconstructed by any

other component (please list all the four codewords and check).

Remark 7.9. The concept of locality only makes sense for codes of minimum distance 2

or more. Indeed, if n ≥ 2 and C ≤ Fnq is a code of minimum distance 1, then we can

find x, y ∈ C and i ∈ {1, ..., n} with xi 6= yi and xj = yj for all j ∈ {1, ..., n} \ {i}. This

contradicts the definition of locality for any 1 ≤ r ≤ n− 1. In words, the i-th component

of a codeword cannot be reconstructed from any subset of the remaining ones.

We can summarize the previous remark as follows.

Proposition 7.10. Let 1 ≤ r ≤ n−1 be an integer and let C ≤ Fnq be a code of dimension

k ≥ 1 having locality r. Then dH(C) ≥ 2.

On the other hand, all codes of minimum distance at least 2 have locality r for some

integer r ≥ 1.

Proposition 7.11. Let C ≤ Fnq be a code of dimension k ≥ 1 and minimum distance at

least 2. Then C has locality n− 1.

Proof. Exercise.

By the previous proposition, the following concept is well-defined.

71

Definition 7.12. Let C ≤ Fnq be a code of dimension k ≥ 1 and minimum distance at

least 2. The minimum locality of C is

loc(C) := min{1 ≤ r ≤ n− 1 | C has locality r}.

Exercise 7.13. Compute the minimum locality of the ternary code C ≤ F5
3 defined by

C = {(a, b, a+ b, a− b, a− 2b) | a, b ∈ F3}.

We can explicitly compute the minimum locality of MDS codes.

Exercise 7.14. Let C ≤ Fnq be an MDS code of dimension k ≥ 1 and minimum distance

at least 2. Then loc(C) = k. (Hint : use information sets and Exercise 3.9).

7.3 Bounds for Codes with Locality

The fact that a code C has locality r imposes some constraints on the other parameters

(length, dimension and minimum distance). In this section we state two bounds for the

parameters of a code having a certain locality.

Theorem 7.15. Let C ≤ Fnq be a linear code of dimension k ≥ 1 and having locality

1 ≤ r ≤ n− 1. We have
k

n
≤ r

r + 1
.

Note that the function r 7→ r/(r + 1) is strictly increasing in r. This aligns with the

intuition that (for a fixed n) the smaller the locality, the smaller the code dimension.

Proof of Theorem 7.15. Let S1, ..., Sn be recovery sets for C of cardinality at most r. We

use the following algorithm to construct pairs of sets (A1, B1), (A2, B2),

1. Start with A1 := S1 and B1 := S1 ∪ {1}.

2. For i ≥ 2 do the following: If |Bi| = n, then terminate the algorithm. Otherwise

pick j /∈ Bi and let Ai+1 := Ai ∪ (Sj \Bi), Bi+1 = Bi ∪ Sj ∪ {j}.

Note that the algorithm terminates, as in the second step we always have |Bi+1| > |Bi|.
Therefore the condition |Bi| = n is met for some ` ≥ 1. Note moreover that ` ≥ n/(r+1),

as at every step the size of Bi increases at most by r+ 1. The algorithm gives us pairs of

sets

(A1, B1), (A2, B2), ..., (A`, B`)

with |B`| = n. The following properties can be checked (exercise) by induction on i:

• Ai ⊆ Bi for all 1 ≤ i ≤ `;

• |Bi+1| − |Ai+1| = |Bi| − |Ai|+ 1 for all 1 ≤ i ≤ `− 1;

72

• for all 1 ≤ i ≤ `, if x, y ∈ C and xj = yj for all j ∈ Ai, then xj = yj for all j ∈ Bi.

The above properties imply that |B`|−|A`| = ` and that the projection πA`
: C → F|A`|

q

onto the coordinates in A` is injective. Therefore

k = dim(C) ≤ |A`| = |B`| − ` = n− ` ≤ n− n/(r + 1) = rn/(r + 1),

as desired.

Example 7.16. We apply the previous bound to an MDS code C ≤ Fnq with k ≥ 1 and

d ≥ 2. By Exercise 7.14 we have loc(C) = k. Therefore

k/n ≤ k/(k + 1),

which is equivalent to k ≤ n−1. Thus C meets the bound of Theorem 7.15 with equality

if and only if k = n− 1. For an MDS code, this happens if and only if d = 2.

Theorem 7.15 can be refined taking into account also the minimum distance of the

code d. The proof of the following result is omitted.

Theorem 7.17. Let C ≤ Fnq be a linear code of dimension k ≥ 1, minimum distance d

and having locality 1 ≤ r ≤ n− 1. Then

d ≤ n− k − dk/re+ 2.

Example 7.18. An MDS code as in Example 7.16 meets the previous bound with equality.

Indeed, since d = n− k + 1 we have d = n− k − dk/ke+ 2.

Exercise 7.19. For q sufficiently large, is there a code C ≤ F15
q of dimension k = 7 and

minimum distance d = 9? Is there a code with the same parameters and locality 3?

7.4 The Tamo-Barg Construction

In this section we illustrate a special case of a code construction discovered by Tamo and

Barg. The resulting code meets the bound of Theorem 7.17.

Theorem 7.20. Let n = q − 1 and let k, r ≥ 1 be integers with:

• r | k,

• r + 1 | n = q − 1,

• k/r ≤ (n+ 1)/(r + 1).

Let α be a primitive element of Fq and let P = (α1, ..., αn) a list of the n non-zero

elements of Fq. Fix a bijection ξ : {0, ..., r − 1} × {0, ..., k/r − 1} → {1, ..., k} and let

C :=


 r−1∑

t=0

k
r
−1∑

u=0

vξ(t,u)α
t+u(r+1)
1 , ...,

r−1∑
t=0

k
r
−1∑

u=0

vξ(t,u)α
t+u(r+1)
n

 | i ∈ {1, ..., n}
 ≤ Fnq .

73

Then C is a linear code of dimension k, locality r and minimum distance n−k−dk/re+2.

In particular, C meets the bound of Theorem 7.17 with equality.

Proof. Define β := α(q−1)/(r+1) ∈ Fq and the polynomial g := Xr+1 ∈ Fq[X]. Moreover,

for all 0 ≤ ` ≤ (q − 1)/(r + 1)− 1 let

A` := {α`βm | 0 ≤ m ≤ r}.

Claim A. The A`’s partition F∗q = Fq \ {0} into subsets of size r + 1. Moreover, the

polynomial g is constant on each A` with value α`(r+1).

Proof of the claim. Let H be the multiplicatove subgroup of F∗q generated by β. We have

|H| = r + 1, the order of β. The number of cosets of F∗q modulo H is (q − 1)/|H| =

(q − 1)/(r + 1). Each A` is a coset by definition. Moreover, A` 6= A`′ for all 0 ≤ `, `′ ≤
(q− 1)/(r+ 1)− 1 with ` 6= `′. To see this, fix ` 6= `′ as above and suppose without loss of

generality that `′ > `. We will show that α` ∈ A` but α` /∈ A`′ . Towards a contradiction,

suppose that there exists 0 ≤ m ≤ r with α` = α`
′
βm. Then 1 = α`

′−`+m(q−1)/(r+1). Since

`′ > `, we have

0 < `′ − `+m(q − 1)/(r + 1) ≤ (q − 1)/(r + 1)− 1 + r(q − 1)/(r + 1) = q − 2 < q − 1.

Since α is a primitive element, this is a contradiction. Since the A`’s are distinct and

they are cosets, they are all the cosets (as they are the right number). Moreover, since

they are cosets they are pairwise disjoint. Finally, it is easy to see that for all 0 ≤ ` ≤
(q − 1)/(r + 1)− 1 and all 0 ≤ m ≤ r we have

g(α`βm) = α`(r+1),

which only depends on `. Thus g is constant on each A`, as claimed. N

Next, let s := k + k/r − 1 and define linear maps

Fkq
ψ→ Fq[X]<s

ϕ→ Fnq

as follows. For v ∈ Fkq , let

ψ(v) :=
r−1∑
t=0

k
r
−1∑

u=0

vξ(t,u)X
t+u(r+1).

For p ∈ Fq[X]<s, let ϕ(p) := (p(α1), ..., p(αn)). Note that the map ψ is well-defined

because

r − 1 + (k/r − 1)(r + 1) = k + k/r − 2 < s.

Moreover, C is the image of ϕ ◦ ψ by definition.

Claim B. The map ψ in injective.

74

Proof of the claim. The numbers t+ u(r + 1) for 0 ≤ t ≤ r − 1 and 0 ≤ u ≤ k/r − 1 are

distinct. Therefore the polynomials X t+u(r+1) for 0 ≤ t ≤ r− 1 and 0 ≤ u ≤ k/r− 1} are

linearly independent. In particular, for v ∈ Fkq we have

r−1∑
t=0

k
r
−1∑

u=0

vξ(t,u)X
t+u(r+1) = 0

if and only if vξ(t,u) = 0 for all t and u. Since ξ is a bijection, this happens if and only if

v = 0. Therefore ψ is injective. N

Claim C. For all v ∈ Fkq with v 6= 0 we have ωH((ϕ ◦ ψ)(v)) ≥ n − k − k/r + 2 ≥ 1.

In particular, ϕ ◦ ψ is injective and C has dimension k and minimum distance at least

n− k − k/r + 2 .

Proof of the claim. Let v ∈ Fkq and suppose that ωH((ϕ ◦ψ)(v)) ≤ n− k− k/r+ 1. Then

the polynomial ψ(v) has at least k+k/r−1 = s distinct roots and degree strictly smaller

than s. Therefore ψ(v) is the zero polynomial. In turn, this implies v = 0 because ψ is

injective by Claim B. The fact that n − k − k/r + 2 ≥ 1 follows from our assumption

k/r ≤ (n+ 1)/(r + 1).

Finally, observe that ϕ ◦ψ is linear and injective by Claim C, and that C is its image

by definition. Therefore C is a linear code of dimension k and minimum distance at least

n− k − k/r + 2. N

Claim D. The code C has locality r.

Proof of the claim. For 0 ≤ i ≤ n, let Si := {1 ≤ j ≤ n | αj ∈ A`} \ {i}, where ` is the

unique integer with αi ∈ A`. Note that the Si’s are well-defined by Claim A. Fix any

x ∈ C and i ∈ {1, ..., n}. Define the polynomial

δ :=
∑
h∈Si

xh
∏

γ∈Ai\{αi,αh}

X − γ
αh − γ

∈ Fq[X].

We claim that δ(αi) = xi, showing that xi can be retrieved from the entries indexed by

j ∈ Si. To see this, let v ∈ Fnq be the unique vector with x = (ϕ ◦ ψ)(v). The fact that v

is unique follows from the injectivity of ϕ ◦ ψ (Claim C). Define a second polynomial

∂ :=
r−1∑
t=0

k
r
−1∑

u=0

vξ(t,u)α
u(r+1)
i X t ∈ Fq[X].

For all j ∈ Si we have

δ(αj) = xj

and

∂(αj) =
r−1∑
t=0

k
r
−1∑

u=0

vξ(t,u)g(αi)
uαtj.

75

Since j ∈ Si, αi and αj belong to the same coset A`. In particular, g(αi) = g(αj) by

Claim A and so

∂(αj) =
r−1∑
t=0

k
r
−1∑

u=0

vξ(t,u)g(αj)
uαtj = ψ(v)(αj) = (ϕ ◦ ψ)(v)j = xj.

Therefore the polynomials δ and ∂ take the same value on r distinct elements of Fq.
Since these polynomials have degree upper bounded by r − 1, we must have that δ = ∂.

Therefore

δ(αi) = ∂(αi) = xi,

as claimed. This shows that C has locality r with the Si’s as recovery sets. N

Combining all the claims we conclude that C has dimension k, locality r and minimum

distance at least n− k − k/r + 2. Therefore, by Theorem 7.17, C has minimum distance

exactly n− k − k/r + 2.

Example 7.21. To be written.

7.5 Other Exercises

Exercise 7.22. Suppose that n ≥ 2 is even and let C ≤ Fn/2q be an MDS code of

dimension k ≥ 1. Define D := {(x, x) | x ∈ C } ≤ Fnq . Compute loc(D) and show that D

achieves the bound of Theorem 7.17.

76

Chapter 8

Code-Based Cryptography

In a few words, cryptography is about protecting information in such a way that only those

for whom information is intended can read it. The protection offered by cryptosystem

is different from the protection offered by error-correcting codes: In coding theory we

protect information from a noise by adding redundancy, while in cryptography we protect

information from an eavesdropper. Nonetheless, error-correcting codes can also be used

to construct cryptosystems.

8.1 The McEliece Cryptosystem

McEliece proposed a cryptosystem based on error-correcting codes in 1978. It is one of

the oldest known public key cryptosystems. The system relies on the fact that decoding a

linear code whose specific structure is unknown is computationally hard. The McEliece

scheme works as follows:

• Alice picks a code C ≤ Fnq for which the minimum distance decoder DC : Fnq →
C ∪ {f} can be efficiently implemented; see Definition 1.18. She then represents C

via a generator matrix GC and computes G′C = A · GC · P , where A ∈ Fk×kq is an

invertible matrix and P ∈ Fn×nq is a permutation matrix; see Exercise 2.94. Note

that, by Exercise 2.17, the matrix A ·GC generates C , while G′C doesn’t in general

(but it generates a code that is equivalent to C). Finally, Alice makes G′C and

d = dH(C) public. This is the key generation.

• In order to send a message to Alice, Bob selects a vector y ∈ Fkq , computes x = y ·G′C
and adds to it a uniformly random vector e ∈ Fnq of Hamming weight ωH(e) =

b(d − 1)/2c. This procedure is called encryption. The vector x + e is then sent to

Alice.

• In order to recover the message sent by Bob (decryption), Alice computes the vector

(x+ e) · P−1 = x · P−1 + e · P−1 = y · A ·GC + e · P−1.

77

Observe that y ·A ·GC ∈ C and that ωH(e · P−1) = ωH(e) < d/2, because P−1 is a

permutation matrix as well; see again Exercise 2.94. Therefore (explain why)

DC ((x+ e) · P−1) = y · A ·GC .

Finally, since A ·GC has full rank it has a right-inverse (that can be pre-computed

by Alice). In particular, y can be efficiently recovered from y · A ·GC .

The attacker Eve has access to G′C and to x + e. Therefore she would be able to

recover y if she could implement a decoder for the code generated by G′C . The security of

the cryptosystem relies on the fact that decoding in a code whose structure is unknown is

computationally hard. Note that Eve does not know the specific code C that was selected.

Moreover, the matrices A and P have the function of disguising the matrix GC , making

even more difficult to reveal the structure of C .

8.2 A Note on Attack Strategies

The strategies to attack the McEliece cryptosystem (or other cryposystems based on

error-correcting codes, such as the Niederreiter scheme) can be divided into two classes.

1. The first type of strategy attemps to recover the structure of the code C used by

Alice starting from G′C . The attacker assumes that C belongs to a certain family of

codes (for example, Reed-Solomon or Goppa codes) and tries to understand which

code was picked from that family. This strategy uses the fact that the properties of

a highly structured code cannot be entirely disguised by the matrices A and P .

2. The second type of strategy is based on finding efficient decoding algorithms that

work nicely for sufficiently general classes of codes. The best attacks in this class are

obtained by improving a general decoding technique called information set decoding.

8.3 Information Set Decoding

In this section we describe how to decode an arbitrary linear code using information sets;

see Section 2.9. In the sequel, given a matrix G ∈ Fk×nq and a non-empty set S ⊆ {1, ..., n}
of cardinality s, we let πS(G) ∈ Fk×sq be the matrix formed by the columns of G indexed

by S (in the same order).

Lemma 8.1. Let C ≤ Fnq be a code of dimension k ≥ 1 and let G ∈ Fk×nq be a generator

matrix of C . Let S ⊆ {1, ..., n} be a minimal information set for C . Then πS(G) has size

k × k and is invertible. Moreover, for all x ∈ C we have

x = πS(x) · πS(G)−1 ·G.

78

Proof. The matrix πS(C) has size k× k by the definition of minimal information set and

is invertible by Proposition 2.79, part 4. Write x = z ·G for z ∈ Fkq . We trivially have

x = z · πS(G) · πS(G)−1G. (8.1)

Applying πS to both sides of (8.1) we obtain

πS(x) = z · πS(G) · πS(G)−1πS(G) = z · πS(G) · Ik,

where Ik denotes the identity k × k matrix over Fq. Therefore z = πS(x) · πS(G)−1.

Substituting z into (8.1) gives the lemma.

Proposition 8.2. Let C ≤ Fnq be a code of dimension k ≥ 1 and minimum distance d.

Let G ∈ Fk×nq be a generator matrix of C . Let x ∈ C be a codeword and e ∈ Fnq a vector

of weight ωH(e) < d/2. There exists a minimal information set S ⊆ {1, ..., n} of C for

which

x = πS(x+ e) · πS(G)−1 ·G.

In particular, there exists a minimal information set S ⊆ {1, ..., n} of C with

dH
(
x+ e, πS(x+ e) · πS(G)−1 ·G

)
< d/2.

Proof. Let T := {1, ..., n} \ σH(e). We claim that πT (G) has rank k. To see this, suppose

towards a contradiction that rk(πT (G)) ≤ k− 1. Then there exists x ∈ C with x 6= 0 and

σH(x) ∩ T = ∅ (explain why). Therefore 1 ≤ ωH(x) < d/2, contradicting the fact that C

has minimum distance d.

Since πT (G) has rank k, there exists a minimal information set S for C with S ⊆ T .

In particular, S is disjoint from σH(e) and so πS(x+ e) = πS(x). Therefore

πS(x+ e) · πS(G)−1 ·G = πS(x) · πS(G)−1 ·G = x,

where the latter identity follows from Lemma 8.1.

Proposition 8.2 suggests the following decoding algorithm for a linear code based on

minimal information sets.

Algorithm 8.3 (Information set decoding). The inputs are:

• the generator matrix G ∈ Fk×nq of a code C ≤ Fnq of dimension k ≥ 1 and dH(C) = d;

• the collection I (C) of all minimal information sets of C ;

• the received vector y ∈ Fnq .

Proceed as follows:

1. For all S ∈ I (C) compute xS := πS(y) · πS(G)−1 ·G ∈ C .

2. If dH(y, xS) < d/2, then return xS and terminate the algorithm.

79

3. If no such xS is found, then return a failure message.

Remark 8.4. In the notation of Algorithm 8.3, Proposition 8.2 guarantees that if y = x+e

for some x ∈ C and e ∈ Fnq with ωH(e) < d/2, then information set decoding is successful

and returns x. Note that, under these assumptions, x is the unique codeword of C that

minimizes the Hamming distance from y.

We illustrate how information set decoding works with an example.

Example 8.5. Consider the 2-dimensional code C ≤ F5
3 generated by the matrix

G =

(
1 0 1 2 1

0 1 2 1 1

)
∈ F2×5

3 .

It can be checked that C has minimum distance d = 3. Let x = (2, 0, 2, 1, 2) ∈ C and

y = x+ (0, 0, 2, 0, 0) = (2, 0, 1, 1, 2). Note that dH(x, y) = 1 < d/2.

We list the minimal information sets of C as:

S1 = {1, 3}, S2 = {1, 5}, S3 = {2, 5}, S4 = {1, 4}, S5 = {4, 5},
S6 = {2, 4}, S7 = {1, 2}, S8 = {2, 3}, S9 = {3, 5}.

The algorithm starts with S1 and computes

xS1 = πS1(y) · πS1(G)−1 ·G =
(
2 1

)
·
(

1 1

0 2

)−1
·
(

1 0 1 2 1

0 1 2 1 1

)
=
(
2 1

)
·
(

1 1

0 2

)
·
(

1 0 1 2 1

0 1 2 1 1

)
=
(
2 1 1 2 0

)
.

We have dH(y, xS1) = 3 6< d/2 and therefore the algorithm passes to the next minimal

information set, S2 = {1, 5}, computing

xS2 = πS2(y) · πS2(G)−1 ·G =
(
2 2

)
·
(

1 1

0 1

)−1
·
(

1 0 1 2 1

0 1 2 1 1

)
=
(
2 2

)
·
(

1 2

0 1

)
·
(

1 0 1 2 1

0 1 2 1 1

)
=
(
2 0 2 1 2

)
.

This time dH(y, xS2) = 1 < d/2 and therefore the algoritm returns (2, 0, 2, 1, 2) = x,

terminating correctly.

It is natural to ask if the output of Algorithm 8.3 depends on the order in which the

information sets are listed. The answer to this important question is negative.

Proposition 8.6. The output of Algorithm 8.3 does not depend on the order in which

the elements of I (C) are tested.

80

Proof. Exercise.

Remark 8.7. In the notation of Algorithm 8.3, suppose that y = x + e where x ∈ C ,

e ∈ Fnq , and ωH(e) ≥ d/2. Then information set decoding does not return x in general.

The following exercise illustrates this point.

Exercise 8.8. Let C , G and x be as in Example 8.5. Show that information set decoding

returns a failure message if applied to y = x + (2, 0, 2, 0, 0) and returns (0, 1, 2, 1, 1) 6= x

if applied to y = x+ (2, 1, 0, 0, 2).

Remark 8.9. In practice, it is convenient to select the information sets to be tested in

Algorithm 8.3 uniformly at random. This yields the so-called probabilistic information set

decoding algorithm.

8.4 Other Exercises

Exercise 8.10 (the answers can be found in Appendix C). Find the minimum distance

and all minimal information sets of the code generated by(
1 0 1 1 0

0 1 1 1 1

)
∈ F2×5

2 .

Use information set decoding to decode the following vectors:

1. (0, 1, 1, 1, 1) ∈ C ;

2. (1, 1, 1, 1, 1) /∈ C ;

3. (1, 0, 1, 1, 1) /∈ C ;

4. (1, 1, 1, 1, 0) /∈ C ;

5. (0, 0, 0, 0, 0) ∈ C .

Exercise 8.11. Let 1 ≤ d ≤ n be an integer. In the notation of Algorithm 8.3, what is

the cardinality of I (C) if C is an MDS code of minimum distance d?

Exercise 8.12 (the answers can be found in Appendix C). Find the minimum distance

and all minimal information sets of the code generated by(
1 0 1 1

0 1 1 4

)
∈ F2×4

5 .

Use information set decoding to decode the following vectors:

1. (3, 4, 2, 4) ∈ C ;

2. (3, 4, 2, 1) /∈ C ;

3. (0, 0, 0, 0) ∈ C ;

81

4. (0, 0, 0, 2) /∈ C ;

5. (0, 0, 1, 2) /∈ C .

82

Chapter 9

Network Coding

When discussing channels and codes, in Chapter 1 we implicitly concentrated on the

scenarios where one source of information attempted to communicate with one terminal.

Network coding focuses instead on the situation where one source S attempts to transmit

several messages simulteneously to multiple terminals T1, ...,TN . The source and the

receivers are connected via a network of intermediate vertices (or nodes), as in Figure 9.1.

Multiple sources can also be allowed, leading to a rich theory. In these notes we only treat

single-source networks.

S

T1

T2

T3

Figure 9.1: An example of network

9.1 Recombining Messages

In the context of network coding, the source S sends over the outgoing edges vectors that

belong to an extension field Fqm , for some q and some m that depend on the edge capacity.

We regard Fqm as a linear space over Fq. Each terminal needs to receive all such vectors

(multicast). Moreover, the network is by assumption delay free, i.e., communication is

instantaneous.

We assume that the network is error free, and ask ourselves how many messages can

be transmitted with a single use of the network. This number is called the (one-shot)

capacity of the network.

83

The traditional approach to network multicast is based on routing and works as follows.

An intermediate vertex collects the inputs from the incoming edges, and forwards as many

of these as possible towards the terminals. In the seminal paper [1], Ahlswede, Cai, Li,

and Yeung discovered that there is a better approach, namely, recombining the inputs

with each other before forwarding them. This strategy is called network coding and is

efficiently illustrated with an example.

The network in Figure 9.2 has one source S, two terminals T1 and T2, and four

intermediate vertices connected as shown in the picture. It is called the Butterfly network.

The source S attempts to transmit messages to both terminals T1 and T2 as efficiently

as possible.

S

T1

T2

V

Figure 9.2: The Butterfly network

It is not difficult to see that, using a classical routing strategy, the source S cannot

transmit more than 1 message to both terminals in a single channel use. Intuitively, the

reason behind this lies in the fact that the vertex V acts as a “bottleneck”, as it has two

incoming edges but only one outgoing edge. Therefore, when performing routing, only

one of the input messages can be forwarded by V. Please try yourself to transmit e.g. two

messages in a single channel use using routing, and make sure you don’t manage! ;-)

If one uses the network multiple times (which is not the model we are focusing on in

these notes, but still very interesting to think about) it can be shown that routing cannot

deliver more than 1.5 messages per channel use in average. A strategy that delivers 3

messages in 2 time slots in depicted in Figures 9.3 and 9.4.

S

T1

T2

V

v1

v2

v1

v2

v1 v1

v1

v1

v2

Figure 9.3: Routing, time slot 1.

S

T1

T2

V

v2

v3

v2

v3

v3 v3

v3

v2

v3

Figure 9.4: Routing, time slot 2.

In Figure 9.5 a network coding strategy is presented that delivers instead two messages,

achieving a rate of 2 transmitted messages per channel use. This time the vertex V is

allowed to transmit the sum of the two incoming messages v1 and v2, instead of routing

only one of the two. Terminal T1 obtains v1 and v1 + v2, and terminal T2 obtains v2 and

84

v1 + v2. So both terminals can easily compute v1 and v2. It is possible to show that 2 is

the maximum number of messages that can be transmitted in average with any strategy;

see also the following Theorem 9.7.

S

T1

T2

V

v1

v2

v1

v2

v1 + v2
v1 + v2

v1 + v2

v1

v2

Figure 9.5: A network coding scheme.

A fundamental result in coding theory states that network coding can be applied

to any network, resulting in a capacity-achieving communication strategy under certain

assumptions.

DISCLAIMER For the sake of clarity in the exposition, we will need to treat some

network coding concepts a bit informally. For example, we do not give a rigorous mathe-

matical definition of one-shot capacity of a network, and simply define it as “the maximum

number of messages that can be transmitted to all terminals in a single channel use”. This

is not a rigorous mathematical definition, but it is good enough to convey the right idea.

In general, when discussing network coding one always needs to find a balance between

formalism and clarity.

To reassure the purists, all what we treat can be made fully rigorous, at the price of

a quite heavy notation and terminology. The interested reader is referred to [7] for more

details about this. We instead refer to [3] for a general introduction to network coding.

9.2 Multicast Networks and the Edge-Cut Bound

In this section we define communication networks and state an upper bound for their

capacity. We start by establishing the notation for the remainder of the chapter.

Notation 9.1. In the sequel, q is a prime power and m is a positive integer, unless

otherwise stated.

A communication network can be mathematically modeled as follows (as already men-

tioned, we only treat networks with one source of information).

Definition 9.2. A network is a 4-tuple N = (V ,E ,S,T) where:

1. (V ,E) is a finite, directed, acyclic multigraph;

2. S ∈ V is a vertex called source;

85

3. T ⊆ V is a set of vertices called terminals.

We also assume that the following hold:

4. |T | ≥ 1 and S /∈ T ;

5. For every T ∈ T there exists a directed path from S to T.

6. The source does not have incoming edges, and terminals do not have outgoing edges.

7. For every vertex V ∈ V there exists a direct path from S to V and from V to some

terminal T ∈ T .

Note that property 7 guarantees that in N there are no “isolated” vertices.

Notation 9.3. We denote the one shot capacity (see page 83) of N by C(N).

The main result of this section states that the capacity cannot exceed a certain graph-

theoretic invariant of the underlying network N . The latter is defined as follows.

Definition 9.4. Let N = (V ,E ,S,T) be a network. An (edge) cut between S and a

terminal T ∈ T is a subset E ′ ⊆ E with the property that every directed path from S

to T has an edge from E ′. We denote by min-cut(S,T) the minimum cardinality of an

edge-cut between S and T. Finally, we let

µ(N) := min{min-cut(S,T) | T ∈ T }.

Example 9.5. Consider the Butterfly network N in Figure 9.2. It is easy to see that

µ(N) = 2.

Example 9.6. Consider the network N in Figure 9.6, with edges labeled as in the

picture. It is obtained from the Butterfly network by changing the direction of one edge.

We have that {e2, e5} is an edge cut between S and T1 (while the same edges in the

Butterfly network are not an edge cut between S and T1). Moreover, there is no edge cut

between S and T1 with cardinality 1. Thus min-cut(S,T1) = 2. On the other hand, {e2}
is an edge cut between S and T2, hence min-cut(S,T2) = 1 (in the Butterfly network we

instead have min-cut(S,T2) = 2). We therefore conclude that µ(N) = min{2, 1} = 1.

S

T1

T2

e1

e2

e4

e3

e6

e8

e9

e5

e7

Figure 9.6

The following result gives an upper bound on the number of messages that can be

transmitted in terms of µ(N). Note that the bound does not depend on q and m. A

rigorous proof goes beyond the scope of this course and is therefore omitted.

86

Theorem 9.7. Let N be a network. We have C(N) ≤ µ(N).

For example, over the Butterfly network we cannot transmit more than 2 messages

in a single channel use (try yourself to do better). In particular, the scheme outlined in

Section 9.1 is capacity-achieving.

A natural question is whether the bound of Theorem 9.7 is sharp or not. In this

chapter we prove that this is the case under certain assumptions. In fact, we prove that if

the messages have entries from a sufficiently large field, then capacity can be achieved by

performing only linear operations at the intermediate vertices of the underlying network.

This is called the max-flow-min-cut theorem (not to be confused with the homonymous

result from graph theory). Before proving the theorem we need to establish the notation

and introduce some network information theory concepts.

9.3 Communication Schemes

In the sequel, N = (V ,E ,S,T) denotes a fixed network. We start by observing that

the edges of N form a partially ordered set. More precisely, for e, e′ ∈ E we write e � e′

if there exists a directed path in N whose initial edge is e and its final edge is e′. It is

easy to see (exercise) that � is an order relation on E , which is not total in general.

Example 9.8. In the network of Figure 9.6 we have e2 � e8, e3 � e5 and e2 � e5. On

the other hand, e7 and e3 are not comparable.

Next, we use a powerful result from order theory, stating that any order can be ex-

tended to a total (also called linear) order.

Theorem 9.9. Let (P,�) be a finite partially ordered set. There exists a total order ≤
on P with the property that a � b implies a ≤ b.

When working with a network N , its edges are generally labeled with numbers (e1,

e2, etc). Moreover, the numbers represent an extension of the partial order defined on

the edges. This convention has been followed in all networks discussed so far. A “bad”

example of labeling is instead the one in Figure 9.7, where e4 � e3.

S

T1

T2

e1

e2

e3

e4

e6

e8

e9

e5

e7

Figure 9.7

87

Remark 9.10. The choice of a total order ≤ for the edges of a network N allows us to

interpret vertex operations without ambiguity. For example, in the network of Figure 9.5,

where the partial order was extended according to the indices of the edges, any operation

performed by V is uniquely specified by a function f : Fqm × Fqm → Fqm . In general, the

incoming vectors are first sorted according to the total order chosen for the edges and

processed via f . They are then transmitted over the outgoing edges, again according to

the chosen total order.

In the sequel, we fix an extension of the partial order on the edges of N . All the

results of this chapter do not depend on the specific choice of the order extension.

Definition 9.11. For a vertex V ∈ V , denote by in(V) the set of incoming edges of V

and by out(V) the set of its outgoing edges. Then a network code for N is a collection

of maps

F =
{
fV : F|in(V)|

qm → F|out(V)|
qm : V ∈ V \ ({S} ∪T)

}
.

Thanks to Remark 9.10, these uniquely define the operations to be performed by the

network vertices. The network code F is called linear if each fV is a map of the form

fV :

v1...
v`

 7→ GV ·

v1...
v`


for some matrix G with entries in Fq. Equivalently, a linear network code is defined as a

collection of matrices

F =
{
fV ∈ F|out(V)|×|in(V)|

q : V ∈ V \ ({S} ∪T)
}
.

Finally, in order to fully specify a communication strategy on N , we need to describe

how it can be initialized by the source.

Definition 9.12. An outer code for N is a non-empty subset C ⊆ F|out(S)|qm .

The set C is to be interpreted as the collection of messages that the source can

attempt to transmit to the terminals; see also the following Example 9.14. Finally, a

communication scheme is specified by an outer code and a network code.

Definition 9.13. A communication scheme for N is a pair (C , F), where C and F

are an outer code and a network code for N , respectively. We say that the communi-

cation scheme is linear if F is linear. Moreover, (C , F) is called unambiguous if every

terminal T of N can recover every transmitted vector x ∈ C (here we assume that C

and F are known to the terminals).

Example 9.14. We revisit the communication scheme of Figure 9.5. We first extend the

partial order on the edges and label the vertices of the network as in Figure 9.8. The

88

S

T1

T2

V3

V1

V2

V4

e1

e2

e3

e4

e6

e8

e9

e5

e7

Figure 9.8

outer code is simply C = F2
qm . The network code F consists of four functions, one for each

intermedite vertex. These functions are linear and are given by the following matrices:

fV1 = fV2 = fV4 =

(
1

1

)
, fV3 =

(
1 1

)
.

We have already shown at the beginning of the chapter that the communication scheme (C , F)

is unambiguous, as each terminal can recover the transmitted message.

We now give an example of communication scheme that is not unambiguous.

Example 9.15. Take the same setup as in Example 9.14 and remove edge e5 from the

network. Then re-define fV1 as the identity 1 × 1 matrix. The pair (F2
qm , F) is not

anymore an unambiguous communication scheme, as T1 cannot distinguish between (0, 0)

and (1,−1), which are both elements of the outer code F2
qm (check all of this yourself).

Remark 9.16. The capacity of N can now be reinterpreted as the largest real number

C ≥ 0 for which there exists an unambiguous communication scheme (C , F) for the

network N with C = logqm(|C |).

9.4 The Max-Flow-Min-Cut Theorem

In this section we prove the “main” theorem of network coding. The result states that

the bound of Theorem 9.7 can be achieved with linear network coding over a sufficiently

large finite field Fq. In the sequel we follow the notation of the previous sections and work

with a fixed network N = (V ,E ,S,T).

Theorem 9.17 (Max-Flow-Min-Cut). Up to removing some edges from N and assuming

that q > |T |, there exists an unambiguous linear communication scheme (C , F) for N

with µ(N) = logqm(|C |).

The proof of Theorem 9.17 relies on two fundamental classical results from graph

theory and algebra, respectively. We state them without proof directly in the context of

our interest, starting from the graph thory one.

89

Theorem 9.18 (Menger). For all T ∈ T , the integer min-cut(S,T) is the maximum

number of edge-disjoint directed paths in (V ,E) connecting S and T.

The next theorem shows that a certain multivariate polynomial always has a non-zero

over a sufficiently large field Fq.

Theorem 9.19. Let p ∈ Fq[X1, ..., XL] be a non-zero polynomial in L ≥ 1 variables with

coefficients in Fq. Suppose that the degree of p in each variable is upper bounded by d.

If q > d, then there exists (α1, ..., αL) ∈ FLq with p(α1, ..., αL) 6= 0.

We are now ready to establish the max-flow-min-cut theorem.

Proof of Theorem 9.17. Let µ := µ(N) and t := |T |. Write T = {T1, ...,Tt}. By

Theorem 9.18, for all i ∈ {1, ..., t} there exists µ edge-disjoint directed paths connecting S

and Ti. We delete from N all edges that do not lie on any of these paths. Note that

after these deletions we have |in(Ti)| = µ for all i ∈ {1, ..., t}.

We look for a linear communication scheme that is not unambiguous. We will find an

outer code of the form

C := {M(S) · v> | v ∈ Fµqm} ⊆ F|out(S)|qm ,

where M(S) is an |out(S)|×µ matrix over Fq. Each intermediate vertex V ∈ V \({S}∪T)

will process information via a linear function fV, represented by a matrix over Fq of size

|out(V)| × |in(V)|.

Our goal is to show that there exists a choice for the matrices {M(V) | V ∈ V \ T }
that produces an unambiguous communication scheme (C , F). Before continuing with

the proof, we briefly illustrate how the approach works over the Butterfly network of

Figure 9.2: the matrices we are looking for are visually depicted in Figure 9.9 and their

entries are denoted by X1, X2, ..., X12.

S
(
X1 X2
X3 X4

)

T1

T2

V3

(
X9 X10

)
V1

(
X5
X6

)

V2(
X7
X8

)

V4

(
X11
X12

)

Figure 9.9

We now go back to the general proof. Since every intermediate node processes in-

formation according to linear functions, each terminal receives on the incoming edges an

90

Fq-linear combination of the messages v1, ..., vµ emitted by the source. These linear com-

binations are uniquely determined by the choice of the matrices in {M(V) | V ∈ V \T }.
For example, in the network of Figure 9.9 terminal T1 receives

X5(X1v1 +X2v2)

on the top edge if the source emits (v1, v2) ∈ F2
qm . In other words, whenever S emits

(v1, ..., vµ) ∈ Fµqm , terminal Ti receives over the incoming edges the rows of

G(Ti) ·

v1...
vµ

 ,

where G(Ti) is a matrix of size µ× µ and entries in Fq. We will show that the matrices

G(T1), ..., G(Tt) can be made simultaneously invertible. In turn, this implies that M(S)

has rank µ (explain why) and that (C , F) is unambiguous (explain why), concluding the

proof of the theorem.

The entries of G(T1), ..., G(Tt) will be denoted by (X` | 1 ≤ ` ≤ L) and treated as

variables. For the network in Figure 9.9 we had L = 12. Note that G(Ti) is invertible if

and only if its determinant is nonzero (we already observed that each of these matrices

has size µ× µ). Therefore the matrices G(T1), ..., G(Tt) are all invertible if and only if

p(X1, ..., XL) :=
t∏
i=1

det(G(Ti)) 6= 0.

We regard p as a polynomial in the L variables X1, ..., XL. Note that p is not the

zero polynomial because, for all i ∈ {1, ..., t}, det(G(Ti)) is a non-zero polynomial. In

order to show this, it suffices to observe that one can set the values of the variables to

achieve the routing solution from S to Ti along the edge-disjoint paths we selected at the

very beginning of the proof. These values make G(Ti) the identity µ × µ matrix, whose

determinant is 1. This shows that det(G(Ti)) is not the zero polynomial.

Another remarkable property of p, whose proof we omit (see [3, Theorem 4]) is that

its degree in each variable is upper bounded by t. Therefore, by Theorem 9.19, if q > t

then the polynomial p has a non-zero (X1, ..., XL). This concludes the proof.

The communication scheme shown in Figure 9.5 can be obtained with the choice of

variables illustrated in Figure 9.10. This choice gives the transfer matrices

G(T1) =

(
1 0

1 1

)
, G(T2) =

(
1 1

0 1

)
.

Note that these are both invertible over any field. Therefore the terminals can recover

any transmitted messages (v1, v2) ∈ F2
qm by inverting them.

91

S
(
1 0
0 1

)

T1

T2

V3

(
1 1

)
V1

(
1
1

)

V2(
1
1

)

V4

(
1
1

)

Figure 9.10

Exercise 9.20. Consider the network N in Figure 9.11.

1. Identify a linear extension of the partial order defined on the network edges (i.e.,

label the edges in a way that is compatible with the partial order).

2. Compute µ(N).

3. Find an unambiguous linear communication scheme (C , F) that delivers µ(N) mes-

sages to both terminal in a single channel use, for some q.

4. For an edge e of N , let Ne be the network obtained from N by removing e (all

the rest remains unchanged). Show that µ(Ne) < µ(N) for any edge e.

5. Is there an edge e of N and an unambiguous (possibly non-linear) communication

scheme (C , F) for Ne with logqm(|C |) = 3? Justify your answer.

S

T1

T2

Figure 9.11

92

Appendix A

Finite Fields

In this appendix we briefly recall the main results of the theory of finite fields. The subject

is purposely treated concisely and quite informally. We refer to [4] for a more complete

discussion.

Definition A.1. A finite field is a field (intended as an algebraic structure) whose

cardinality is finite.

The cardinality of a finite field cannot be any number.

Theorem A.2. If F is a finite field, then there exists a prime number p and an integer

e ≥ 1 with |F| = pe.

Proof. Define the map ϕ : Z → F by ϕ(m) = m · 1. Then ϕ is a ring homomorphism.

Since F is finite, ϕ cannot be injective and there exists m ∈ Z with m 6= 0 and m · 1 = 0.

We can assume m ≥ 2 without loss of generality. There is then a ring isomorphism

Z/mZ → ϕ(Z). Since F is a field, ϕ(Z) must be a domain and therefore m has to be

prime, say m = p. But then Z/pZ is a field and thus F has a subfield F′ isomorphic to

Z/pZ. As F is a vector space over F′ (whose dimension is finite as |F| < +∞), we conclude

that |F| = pe for some e ≥ 1.

It turns out that for every prime power p and every e ≥ 1 there exists a finite field

with cardinality (also called order) pe. This result is not trivial and a classical proof

relies on a little bit of Galois theory. In words, a finite field with the desired cardinality

can be obtained as the splitting field of the polynomial Xpe − X ∈ Z/pZ[X]. In these

notes we obtain the existence of finite fields as a corollary of the following theorem, which

we state without proof.

Theorem A.3. Let p be a prime power and let e ≥ 1 be an integer. There exists a monic

irreducible polynomial f ∈ Z/pZ[X] of degree e.

The previous theorem gives us a concrete way of constructing a finite field with the

desired cardinality using the following result from commutative algebra.

93

Lemma A.4. Let R be a commutative ring with 1 and let I ⊆ R be a maximal ideal.

Then the quotient ring R/I is a field.

Constructing a finite field with q = pe elements is now easy: Take an irreducible monic

polynomial f ∈ Z/pZ[X] of degree e and define the quotient F := Z/pZ[X]/(f). Since

f is irreducible and Z/pZ[X] is a principal ideal ring, the ideal (f) generated by f is

maximal. Therefore F is a field by Lemma A.4. By definition, an element of F is the

equivalence class of a polynomial g ∈ Z/pZ[X] modulo f . These are in bijection with the

polynomials of degree up to e− 1 in Z/pZ[X]. As the number of such polynomials is pe,

we have |F| = pe as well.

If π : Z/pZ[x] → Z/pZ[x]/(f) denotes the projection on the quotient and α = π(X)

is the class of X, then

F = Z/pZ[α] := {a0 + a1α + · · ·+ ae−1α
e−1 | (a0, ..., ae−1) ∈ (Z/pZ)e}.

In other words, F can be seen as the set of polynomial expressions in α, where α satisfies

the equation f(α) = 0.

Example A.5. We want to construct a finite field with q = 23 elements, so we take p = 2

and e = 3. The polynomial f = X3 + X + 1 ∈ Z/2Z[X] is irreducible. Let α be the

image of X in the quotient Z/2Z[X]/(X3 + X + 1). Note that α is a root of (the image

of) f , i.e., α3 = α + 1. Then the polynomial expressions in α and coefficients in F2 are

a finite field with 23 elements. Apart from the 0 element, we will obtain these by taking

the powers of α and writing them over the basis {1, α, α2} over Z/2Z.

Powers of α Polynomial expression

α0 1

α1 α

α2 α2

α3 α + 1

α4 α2 + α

α5 α3 + α2 = α2 + α + 1

α6 α2 + 1

Note that α7 = α(α2 + 1) = α3 + α = 1. Therefore F = {0} ∪ {αi | 0 ≤ i ≤ q − 2}.
and all the non-zero elements of F can be written as a power of α.

If F is a finite field and α ∈ F, then the powers of α do not necessarily generate all

the non-zero elements of F. However there is always such an α.

Proposition A.6. The multiplicative group of a finite field is cyclic.

An element α ∈ F that generate the multiplicative group F∗ is called primitive. A

monic irreducible polynomial f ∈ Z/pZ[X] is called primitive if the class of X (usually

94

denoted by α) generates the multiplicative group of F = Z/pZ/(f). It turns out that

there is always at least one primitive polynomial.

Theorem A.7. For all primes p and all integers e ≥ 1 there exists a primitive polynomial

f ∈ Z/pZ[X] of degree e.

The previous result tells us that a finite field F with q = pe elements can always be

constructed using the recipe illustrated in Example A.5:

1. identify a primitive polynomial f ∈ Z/pZ[X],

2. define α to be the class of X in the quotient Z/pZ[X]/(f),

3. describe F as the powers of α and the zero element.

A natural question is whether the choice of the primitive polynomial f has a huge

impact on the structure of the finite field F. Another one is whether all finite fields can

be constructed via primitive polynomials. The answers to this questions are no and yes,

respectively. Indeed, a fundamental result from Galois theory tells us that the finite field

with q = pe elements is unique up to isomorphisms.

Theorem A.8. Finite fields F and F′ are isomorphic if and only if they have the same

cardinality.

Note that the writing q = pe (where p is a prime power and e ≥ 1) is unique.

Remark A.9. If p1 and p2 are prime numbers and e1, e2 ≥ 1 are integers with pe11 = pe22 ,

then p1 = p2 and e1 = e2.

Theorem A.8 ensures that there is essentially a unique finite field with q elements, for

every prime power q. We denote it by Fq and call it the finite field with q elements. When

q = p is a prime we have Fp = Z/pZ up to isomorphism.

Let us see another example.

Example A.10. Let f = X2 + 6X + 3 ∈ F7[X]. We claim that f is irreducible. To see

this, observe that f has degree 2. In particular, if f was reducible, it would have a root

in F7. However, we have

f(0) =, f(1) = 3, f(2) = 5, f(3) = 2, f(4) = 1, f(5) = 2, f(6) = 5.

Thus f is irreducible. Let α be the image of X in the quotient Z/7Z[X]/(X2 + 6X + 3).

Then the polynomial expressions in α and coefficients in F7 are a finite field with 72

elements. These can be uniquely written over the basis {1, α} using the fact that α2 =

−6α− 3 = α + 4.

We conclude the appendix with some exercises.

95

Exercise A.11. Show that the polynomial f = X2 + 2X + 2 ∈ F3[X] is irreducible.

Use f to construct the finite field F9.

Exercise A.12. Is there a finite field with 15 elements? Explain why.

Exercise A.13. Find all the irreducible monic polynomials of degree 3 in F2[X].

Exercise A.14. Let q = pe be a prime power and let f = Xq −X ∈ Zp[X]. Let F be a

field containing the splitting field of f . Prove that the roots of f form a subfield R ⊆ F .

Deduce that R is a splitting field of f .

Exercise A.15. Show that the polynomial f = X2 + 4X + 2 ∈ F5[X] is irreducible.

Use f to construct the finite field F25.

Exercise A.16. Find all the irreducible monic polynomials in F2[X] of degree 3. Con-

struct the finite field F8 using two of them.

96

Appendix B

Complexity Essentials

When a code is used in digital communication, decoding is performed by a machine

implementing a decoding algorithm. As decoding needs to be performed several times in

very short time intervals, the corresponding algorithm must be efficient.

In this appendix we briefly describe how the efficiency of an algorithm is measured.

In order to do this, we introduce the standard Landau notation to describe the growth

rate of functions.

Notation B.1. Let S ⊆ N be an infinite subset and let f, g : S → R be functions that

only take non-negative values. We write:

f ∈ O(g) as s→ +∞

when there exist numbers c ∈ R and s0 ∈ S with c > 0 and 0 ≤ f(s) ≤ c · g(s) for all real

numbers s ≥ a0.

Suppose that an algorithm A has a numerical value, say s, among its inputs (in

coding theory, that’s typically the code length n). Suppose moreover that A performs

operations over Fq. The (arithmetic) complexity of A in base q with respect to the

input s is the function that associates to s the number of elementary operations over Fq
needed to terminate the algorithm when s is the input, in the worst-case scenario with

respect to all the other inputs. We take as elementary operations over Fq addition and

multiplication.

The efficiency of an algorithm is often measured by providing an asymptotic estimate

of its complexity with respect to one of the numerical inputs going to infinity, treating

the others as constants. We therefore write sentences of the form:

“A has complexity in O(s3)” or “A terminates in O(s3) operations”

to say that the complexity of A with respect to s, say s 7→ C(s), satisfies C ∈ O(s3). Note

that this only provides an asymptotic estimate and does not specify the exact number of

97

needed operations.

In the remainder of the appendix we compute (or state) the complexity of some algo-

rithms. We let n be a positive integer and q be a prime power.

Example B.2. The inner product of x, y ∈ Fnq can be computed by performing n multi-

plications and n− 1 additions over Fq via

〈x, y〉 = x1y1 + x2y2 + · · ·+ xnyn.

The complexity in base q of this strategy with respect to n is therefore 2n − 1 ∈ O(n),

and is linear in n.

Example B.3. A system of n equations in n unknowns over Fq can be solved in O(n3)

operations over Fq using Gaussian elimination.

Example B.4. The division of polynomials p, q ∈ Fq[X] of degree at most n can be

performed in O(n2) operations over Fq using the long division algorithm.

98

Appendix C

Solutions to Some of the Exercises

Proof of Proposition 1.15. We only show the third property. For x, y ∈ Fnq define the set

D(x, y) := {1 ≤ i ≤ n | xi 6= yi}. Then for any x, y, z ∈ Fnq we have

D(x, y) ⊆ D(x, z) ∪D(z, y).

Computing the cardinalities in the above inclusion we obtain

dH(x, y) = |D(x, y)| ≤ |D(x, z) ∪D(z, y)| ≤ |D(x, z)|+ |D(z, y)| = dH(x, z) + dH(z, y),

as desired.

Proof of Lemma 1.20. For a vector y, let Sy := {1 ≤ i ≤ n | yi 6= xi}. The number of

vectors y at distance i from x is

∑
S⊆{1,...,n}
|S|=i

|{y ∈ Fnq | Sy = S}| =
∑

S⊆{1,...,n}
|S|=i

(q − 1)i =

(
n

i

)
(q − 1)i,

which is the desired formula.

Solution to Exercise 1.29. 1. Take C = {(0, 0, 0, 0), (1, 1, 1, 0)}.

2. Suppose by contradiction that there exists a code C ⊆ F4
2 with |C | ≥ 3 and dH(C) ≥

3. Let x, y, z ∈ C be distinct codewords. Define D(z, x) := {1 ≤ i ≤ n | zi 6= xi}
and D(z, y) := {1 ≤ i ≤ n | zi 6= yi}. We have |D(z, x)| ≥ 3 and |D(z, y)| ≥ 3,

hence D(z, x) ∩D(z, y) ≥ 6− 4 = 2. In particular, there exist i, j ∈ {1, ..., n} with:

• i 6= j;

• zi 6= xi and zi 6= yi;

• zj 6= xj and zj 6= yj.

Since x, y, z have entries in F2, the last two properties force xi = yi and xj = yj,

from which (since i 6= j) dH(x, y) ≤ 4− 2 = 2 < 3, a contradiction.

99

Note: alternatively, one can use the fact that dH is translation invariant (Exer-

cise 1.26) and assume x = (0, 0, 0, 0), simplifying the proof.

3. Take for example C = {(0, 0, 0, 0), (1, 1, 1, 0), (0, 2, 2, 2)}.

Proof of Proposition 2.20. Since C is linear, 0 ∈ C and therefore

{dH(x, y) | x, y ∈ C , x 6= y} ⊇ {dH(x, 0) | x ∈ C , x 6= 0} = {ωH(x) | x ∈ C , x 6= 0}.

It follows that dH(C) ≤ min{ωH(x) | x ∈ C , x 6= 0}. Vice versa, take x, y ∈ C with

x 6= 0 and dH(x, y) = dH(C). We have x− y ∈ C and dH(C) = dH(x, y) = dH(x− y, 0) =

ωH(x− y). Therefore

min{ωH(x) | x ∈ C , x 6= 0} ≤ dH(C),

concluding the proof.

Solution to Exercise 2.55. 1. The result is immediate if |C | = 1. Now suppose |C | ≥ 2.

Define the linear map ϕ : Fnq → Fn+1
q by ϕ : (x1, ..., xn) 7→ (x1, ..., xn,−x1 − x2 −

· · · − xn). The code C ext is the image of C under ϕ. Since ϕ is injective, C ext has

the same dimension as C . Furthermore, for all x ∈ C we have ωH(ϕ(x)) ≥ ωH(x).

Thus dH(C ext) ≥ dH(C).

2. If q = 2, C is non-zero and d = dH(C) is odd, then every minimum weight codeword

x ∈ C satisfies ωH(ϕ(x)) = d+ 1. Therefore C ext has minimum distance d+ 1.

Proof of Proposition 2.61. Let x ∈ C1 and y ∈ C2 be codewords of weight d1 and d2
respectively. Then (x, x), (0, y) ∈ C1 ⊕P C2 and therefore dH(C) ≤ min{2d1, d2}.

Now take any x ∈ C1 and y ∈ C2 such that (x, x + y) 6= 0. If y = 0 then x 6= 0 and

therefore (x, x+ y) has weight at least 2d1. If y 6= 0, observe that for all i with yi 6= 0 we

have either xi 6= 0 or (x+ y)i 6= 0 (or both). Therefore the weight of (x, x+ y) is at least

ωH(y) ≥ d2. To conclude, in any case the weight of (x, x+ y) is at least min{2d1, d2}.

Solution to Exercise 2.74. Let Λn := {λ ∈ Fnq | λi 6= 0 for all 1 ≤ i ≤ n} and let Sn
denote the symmetric group on the set {1, ..., n}. Finally, let Gn be the group of linear

Hamming metric isometries f : Fnq → Fnq .

Next, define a map ϕ : Λn × Sn → Gn by ϕ(λ, τ) := fλ ◦ fτ for all λ ∈ Λn and

τ ∈ Sn. The map ϕ is well-defined an surjective by Theorem 2.73. We claim that ϕ is

also injective. Indeed, suppose that ϕ(λ, τ) = ϕ(λ′, τ ′) for some λ, λ′ ∈ Λn and τ, τ ′ ∈ Sn.

In particular, for all 1 ≤ i ≤ n we have

ϕ(λ, τ)(ei) = ϕ(λ′, τ ′)(ei),

i.e.,

λτ(i)eτ(i) = λ′τ ′(i)eτ ′(i).

100

This implies τ(i) = τ ′(i) and λi = λ′i for all 1 ≤ i ≤ n. Therefore τ = τ ′ and λ = λ′, which

shows that ϕ is a bijection. In particular, the cardinality of Gn is |Λn×Sn| = (q−1)nn!.

Solution to Exercise 2.84. 1. If the i-th and the j-th column of H are equal, with i 6= j,

then (ei − ej) · H> = 0. Therefore ei − ej ∈ C and C has minimum distance at

most 2, a contradiction.

2. If x ∈ C was sent, y ∈ F5
2 is received and only one error occurred, then y = x + ei

for some 1 ≤ i ≤ n. Therefore H · y> = H · (x + ei)
> = H · x> + H · e>i = H · e>i ,

where the latter product is precisely the i-th column of H. Since the columns of H

are distinct, i can be retrieved by looking at H and at H · e>i .

Solution to Exercise 2.89. The sum of the coefficients of the weight enumerator of a

code C is precisely |C |. The sum of the coefficients of 1Y 9 + 14X3Y 6 + 16X4Z5 +

5X7Y 2 + 10X8Y + 9X9 is 55, which cannot be written in the form qk, with q a prime

power. Therefore there is no linear code with such a weight enumerator.

Solution to Exercise 2.91. Denote by k the dimension of C and let V := {x ∈ Fn2 |
x1 + x2 + · · ·+ xn = 0} ≤ Fnq . Note that V is a vector space of dimension n− 1 over F2.

The codewords of even weight in C are precisely the elements of C ∩ V . Moreover,

dim(C ∩ V) = dim(C) + dim(V)− dim(C + V) ≥ k + n− 1− n = k − 1.

Therefore dim(C ∩ V) ∈ {k, k − 1}. In particular, the number of codewords x ∈ C of

even weight is either 2k = |C |, or 2k−1 = |C |/2.

Solution to Exercise 3.36. Since k ≥ 2 and d = 3, by the Griesmer bound we have

n ≥
k−1∑
i=0

d3/2ie = 3 + 2 +
k−1∑
i=2

d3/2ie ≥ 5 + (k − 2) = k − 3,

from which k ≤ n− 3. The Singleton bound gives instead k ≤ n− 2.

Partial answer to Exercise 5.18. To show the inclusion πS(C)⊥ ⊇ πS(C⊥(S)), we fix x ∈
πS(C⊥(S)) and show that 〈x, πS(y)〉 = 0 for all y ∈ C . Since x ∈ πS(C⊥(S)), there exists

z ∈ C ⊥(S) with x = πS(z). Now observe that

〈x, πS(y)〉 = 〈πS(z), πS(y)〉 = 〈z, y〉,

where the latter equality follows from the fact that the Hamming support of z is contained

in S. Since z ∈ C ⊥ and y ∈ C , we have 〈x, πS(y)〉 = 0, as desired.

Answers to Exercise 8.10. 1. (0, 1, 1, 1, 1) decodes to (0, 1, 1, 1, 1);

2. (1, 1, 1, 1, 1) decodes to (0, 1, 1, 1, 1);

101

3. (1, 0, 1, 1, 1) decodes to (1, 0, 1, 1, 0);

4. (1, 1, 1, 1, 0) decodes to (1, 0, 1, 1, 0);

5. (0, 0, 0, 0, 0) decodes to (0, 0, 0, 0, 0).

Answers to Exercise 8.12. 1. (3, 4, 2, 4) decodes to (3, 4, 2, 4);

2. (3, 4, 2, 1) decodes to (3, 4, 2, 4);

3. (0, 0, 0, 0) decodes to (0, 0, 0, 0);

4. (0, 0, 0, 2) decodes to (0, 0, 0, 0);

5. (0, 0, 1, 2) gives to a decoding failure.

102

Bibliography

[1] R. Ahlswede, N. Cai, S.-Y.R. Li, R.W. Yeung, Network Information Flow, IEEE

Transactions on Information Theory 46 (2000), 4, pp. 1204 – 1216.

[2] V. Guruswami, A. Rudra, M. Sudan, Essential Coding Theory, in preparation

(https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/).

[3] F. R. Kschischang, An Introduction to Network Coding, In Network Coding: Funda-

mentals and Applications (eds: M. Médard, A. Sprintson), Elsevier 2012.

[4] R. Lidl, H. Niederreiter, Finite Fields, Cambridge University Press 1997.

[5] F. J. MacWilliams, N. J. A. Sloane, The Theory of Error-Correcting Codes, North

Holland Mathematical Library 1977.

[6] R. Pellikaan, X.-W. Wu, S. Bulygin, R. Jurrius, Codes, Cryptology and Curves with

Computer Algebra, Cambridge University Press 2018.

[7] A. Ravagnani, F. R. Kschischang, Adversarial Network Coding, IEEE Transactions

on Information Theory 65 (2019), 1, pp. 198–219.

[8] C. Shannon, A Mathematical Theory of Communication, Bell System Technical Jour-

nal, vol. 27, no. 3, pp. 379 – 423, 1948.

[9] H. van Tilborg, Coding Theory – A First Course, Kluwer Academic Publishers (not

printed anymore).

103

https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/

	Notes and Acknowledgement
	List of Symbols
	Introduction
	Channels and Codes
	Communication Channels
	Codes and Decoders
	The q-ary Symmetric Channel
	Other Exercises

	Codes with the Hamming Metric
	Definitions and First Examples
	The Gilbert-Varshamov Bound
	Linear Codes and Their Defining Matrices
	Syndrome Decoding
	Weight Distribution and Its Significance
	New Codes from Old
	The Dual Code
	Equivalence of Linear Codes
	Information Sets
	Other Exercises

	Bounds
	The Singleton Bound and MDS Codes
	The Hamming Bound and Perfect Codes
	The Griesmer Bound
	The Plotkin Bound
	Other Exercises

	Reed-Solomon and Goppa Codes
	Reed-Solomon Codes
	The Berlekamp-Welch Algorithm
	Goppa Codes
	Other Exercises

	Duality Theory
	Preliminary Results
	The MacWilliams Identities
	Computation of Some Weight Distributions
	Duality and MDS Codes
	Other Exercises

	Reed-Muller Codes
	Definition and First Properties
	Structure of Reed-Muller Codes
	The Dual of a Reed-Muller Code
	Other Exercises

	Distributed Storage and Locality
	Storage Strategies
	Locality
	Bounds for Codes with Locality
	The Tamo-Barg Construction
	Other Exercises

	Code-Based Cryptography
	The McEliece Cryptosystem
	A Note on Attack Strategies
	Information Set Decoding
	Other Exercises

	Network Coding
	Recombining Messages
	Multicast Networks and the Edge-Cut Bound
	Communication Schemes
	The Max-Flow-Min-Cut Theorem

	Finite Fields
	Complexity Essentials
	Solutions to Some of the Exercises

